File size: 11,981 Bytes
e9ca55b
 
 
 
 
 
 
 
a672cbe
 
 
 
 
 
9c49fb6
a672cbe
9c49fb6
 
 
a672cbe
 
 
e9ca55b
 
a672cbe
 
e9ca55b
b8b665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9ca55b
 
 
 
 
 
 
 
9c49fb6
 
 
e9ca55b
 
73588cb
 
e9ca55b
 
 
9c49fb6
e9ca55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c49fb6
e9ca55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c49fb6
 
 
 
 
 
 
 
 
 
 
14d9716
 
9c49fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9ca55b
9688817
e9ca55b
 
9688817
 
 
 
 
 
 
e9ca55b
 
 
 
9c49fb6
 
 
 
 
 
b8b665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
---
license: apache-2.0
datasets:
- PrimeIntellect/fineweb-edu
- PrimeIntellect/fineweb
- PrimeIntellect/StackV1-popular
- mlfoundations/dclm-baseline-1.0-parquet
- open-web-math/open-web-math
- arcee-ai/EvolKit-75K
- arcee-ai/Llama-405B-Logits
- arcee-ai/The-Tomb
- mlabonne/open-perfectblend-fixed
- microsoft/orca-agentinstruct-1M-v1-cleaned
- Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs
- Team-ACE/ToolACE
- Synthia-coder
- ServiceNow-AI/M2Lingual
- AI-MO/NuminaMath-TIR
- allenai/tulu-3-sft-personas-code
- allenai/tulu-3-sft-personas-math
- allenai/tulu-3-sft-personas-math-grade
- allenai/tulu-3-sft-personas-algebra
language:
- en
base_model:
- PrimeIntellect/INTELLECT-1
pipeline_tag: text-generation
model-index:
- name: INTELLECT-1-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 0.0
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PrimeIntellect/INTELLECT-1-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 1.75
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PrimeIntellect/INTELLECT-1-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.0
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PrimeIntellect/INTELLECT-1-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 0.0
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PrimeIntellect/INTELLECT-1-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.71
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PrimeIntellect/INTELLECT-1-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.71
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PrimeIntellect/INTELLECT-1-Instruct
      name: Open LLM Leaderboard
---
# INTELLECT-1

## **Model Overview**
**INTELLECT-1** is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.

![Intellect 1 training visual](intellect-1-map.png)

This is an instruct model. The base model associated with it is [INTELLECT-1](https://huggingface.co/PrimeIntellect/INTELLECT-1).


**INTELLECT-1** was trained on up to 14 concurrent nodes distributed across 3 continents, with contributions from 30 independent community contributors providing compute.
The training code utilizes the [prime framework](https://github.com/PrimeIntellect-ai/prime), a scalable distributed training framework designed for fault-tolerant, dynamically scaling, high-perfomance training on unreliable, globally distributed workers.
The key abstraction that allows dynamic scaling is the `ElasticDeviceMesh` which manages dynamic global process groups for fault-tolerant communication across the internet and local process groups for communication within a node.
The model was trained using the [DiLoCo](https://arxiv.org/abs/2311.08105) algorithms with 100 inner steps. The global all-reduce was done with custom int8 all-reduce kernels to reduce the communication payload required, greatly reducing the communication overhead by a factor 400x.

For more detailed technical insights, please refer to our [technical paper](https://github.com/PrimeIntellect-ai/prime).

**Note: You must add a BOS token at the beginning of each sample. Performance may be impacted otherwise.**

## Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("PrimeIntellect/INTELLECT-1-Instruct")
tokenizer = AutoTokenizer.from_pretrained("PrimeIntellect/INTELLECT-1-Instruct")

input_text = "What is the Metamorphosis of Prime Intellect about?"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)

print(output_text)
```

### Example text generation pipeline
```python
import torch
from transformers import pipeline
torch.set_default_device("cuda")

pipe = pipeline("text-generation", model="PrimeIntellect/INTELLECT-1")
print(pipe("What is prime intellect ?"))
```

## **Model Details**
- **Compute Contributors**: Prime Intellect, Arcee AI, kotaro, skre_0, marlo, rodeo, Herb, Olas, superchillen, Hugging Face, mev_pete, 0xfr_, dj, primeprimeint1234, Marco Giglio, realtek, Hyperbolic, hecataeus, NWO, Virtual Machine, droll, SemiAnalysis, _waiting__, toptickcrypto, sto, Johannes, washout_segment_0b, klee
- **Release Date**: 29 Nov 2024
- **Model License**: Apache 2.0

## **Technical Specifications**
| **Parameter**       | **Value**              |
|----------------------|------------------------|
| Parameter Size       | 10B |
| Number of Layers     | 42 |
| Number of Attention Heads | 32 |
| Hidden Size          | 4096 |
| Context Length       | 8192 |
| Vocabulary Size      | 128256 |

**Training Details**:
- **Dataset**: 55% fineweb-edu, 10% fineweb, 20% Stack V1, 10% dclm-baseline, 5% open-web-math
- **Tokens**: 1 Trillion
- **Optimizer**: Diloco/LocalSGD - Inner Optimizer: AdamW, Outer Optmizer: Nesterov SGD



## Post-training

The post-training has been handled by [arcee](https://huggingface.co/arcee-ai)

After completing the globally distributed pretraining phase, we applied several post-training techniques to enhance INTELLECT-1's capabilities and task-specific performance. Our post-training methodology consisted of three main phases.

First, we conducted an extensive series of 16 Supervised Fine-Tuning (SFT) trainings, with individual runs ranging from 1 to 3.3 billion tokens each. The most successful configuration used 2.4 billion training tokens over 3 epochs. We used MergeKit, EvolKit, and DistillKit from Arcee AI to combine the models, generate the data sets, and distill the logits, respectively. For training data, we used a diverse set of high-quality datasets:

1. **New Datasets** (released with INTELLECT-1):
   - [arcee-ai/EvolKit-75k (generated via EvolKit)](https://huggingface.co/datasets/arcee-ai/EvolKit-75K)
   - [arcee-ai/Llama-405B-Logits](https://huggingface.co/datasets/arcee-ai/LLama-405B-Logits)
   - arcee-ai/The-Tomb

2. **Instruction Following**:
   - [mlabonne/open-perfectblend-fixed](https://huggingface.co/datasets/MaziyarPanahi/open-perfectblend-fixed) (generalist capabilities)
   - [microsoft/orca-agentinstruct-1M-v1-cleaned](https://huggingface.co/datasets/mlabonne/orca-agentinstruct-1M-v1-cleaned) (Chain-of-Thought)
   - [Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs](https://huggingface.co/datasets/Post-training-Data-Flywheel/AutoIF-instruct-61k)

3. **Domain-Specific**:
   - [Team-ACE/ToolACE](https://huggingface.co/datasets/Team-ACE/ToolACE) (function calling)
   - [Synthia coder](https://huggingface.co/datasets/MaziyarPanahi/Synthia-Coder-v1.5-I-sharegpt) (programming)
   - [ServiceNow-AI/M2Lingual](https://huggingface.co/datasets/ServiceNow-AI/M2Lingual) (multilingual)
   - [AI-MO/NuminaMath-TIR](https://huggingface.co/datasets/AI-MO/NuminaMath-TIR) (mathematics)

4. **Tulu-3 Persona Datasets**:
   - [allenai/tulu-3-sft-personas-code](https://huggingface.co/datasets/allenai/tulu-3-sft-personas-code)
   - [allenai/tulu-3-sft-personas-math](https://huggingface.co/datasets/allenai/tulu-3-sft-personas-math)
   - [allenai/tulu-3-sft-personas-math-grade](https://huggingface.co/datasets/allenai/tulu-3-sft-personas-math-grade)
   - [allenai/tulu-3-sft-personas-algebra](https://huggingface.co/datasets/allenai/tulu-3-sft-personas-algebra)

Second, we execute 8 distinct Direct Preference Optimization (DPO) runs with various combinations of data sets to enhance specific performance metrics and align the model with human preferences. A key advantage in our post-training process was INTELLECT-1's use of the Llama-3 tokenizer, which allowed us to utilize logits from Llama-3.1-405B to heal and maintain precision during the post-training process via DistillKit.

Finally, we performed 16 strategic merges between candidate models using MergeKit to create superior combined models that leverage the strengths of different training runs. During the post-training phase, we observed that when using a ChatML template without an explicit BOS (begin-of-sequence) token, the initial loss was approximately 15. However, when switching to the Llama 3.1 chat template, the loss for these trainings started much lower at approximately 1.1, indicating better alignment with the underlying Llama 3 tokenizer.

The combination of these post-training techniques resulted in significant improvements in various benchmarks, particularly in knowledge retrieval, grade school math, instruction following and reasoning.


**Performance on benchmarks**

| Model | Size | Tokens | MMLU | GPQA | GSM8K | ARC-C | Hellaswag |
|---|---|---|---|---|---|---|---|
| INTELLECT-Instruct | 10B | 1T | 49.89 | 28.32 | 38.58 | 54.52 | 71.42 |
| MPT-7B-Chat | 7B | 1T | 36.29 | 26.79 | 8.26 | 51.02 | 75.88 |
| Falcon-7B-Instruct | 7B | 1.5T | 25.21 | 26.34 | 4.93 | 45.82 | 70.61 |
| LLM360-AmberChat | 7B | 1.4T | 36.02 | 27.23 | 6.14 | 43.94 | 73.94 |
| LLaMA2-7B-Chat | 7B | 2T | 47.20 | 28.57 | 23.96 | 53.33 | 78.69 |
| LLaMA2-13B-Chat | 13B | 2T | 53.51 | 28.35 | 37.15 | 59.73 | 82.47 |


## **Citations**
If you use this model in your research, please cite it as follows:
```
@article{jaghouar2024intellect,
  title={INTELLECT-1 Technical Report.},
  author={Jaghouar, Sami and Ong, Jack Min and Basra, Manveer and Obeid, Fares and Straube, Jannik and Keiblinger, Michael and Bakouch, Elie and Atkins, Lucas and Panahi, Maziyar and Goddard, Charles and Ryabinin, Max and Hagemann, Johannes},
  journal={arXiv preprint},
  year={2024}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/PrimeIntellect__INTELLECT-1-Instruct-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=PrimeIntellect/INTELLECT-1-Instruct)!

|      Metric       |Value|
|-------------------|----:|
|Avg.               | 1.03|
|IFEval (0-Shot)    | 0.00|
|BBH (3-Shot)       | 1.75|
|MATH Lvl 5 (4-Shot)| 0.00|
|GPQA (0-shot)      | 0.00|
|MuSR (0-shot)      | 3.71|
|MMLU-PRO (5-shot)  | 0.71|