ppo-LunarLander-v2 / config.json
Promiseve's picture
Upload PPO LunarLander-v2 trained agent
45fa521
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d383df045e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d383df04670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d383df04700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d383df04790>", "_build": "<function ActorCriticPolicy._build at 0x7d383df04820>", "forward": "<function ActorCriticPolicy.forward at 0x7d383df048b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d383df04940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d383df049d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d383df04a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d383df04af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d383df04b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d383df04c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d383e092c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693170607001263967, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpDYr17PoO6UuVOOeAvSzQIhko5mLJpuAAAAAAAAIA/ADBsPpXlfj6SVt+9otCMvnPGAT0hf528AAAAAAAAAADmRko9jw4UukzLv7t/rYw4jFGxupo8XjoAAIA/AACAP2YA67z2SHK6YuzjOoSRYbUBUge7bUQCugAAgD8AAIA/5jpOvVybfLoOAtW6GSE1thCuXDreU/U5AACAPwAAgD9mCkg94TyKus+jsDuqK9Y3njzSOvZBhjYAAIA/AACAP209Gb7556Q+FrnePUO6j75EYkq8JozOvAAAAAAAAAAA05UbPgoofLtu5w24LtIKNZRNpbzVlCQ3AACAPwAAgD+ajk09ZVBxPgbmx7yWda++HGtDPL4757wAAAAAAAAAAABrTj1IV5a60SbHuUBM6zWqdIA5ru/lOAAAgD8AAIA/gBsZPVue1rwOrww8J/XgORRuMr5uVBK+AACAPwAAgD9mKMI8SHGLuq3vH7lEPA20YObsun/6OTgAAIA/AACAPzN/Uj5oPao+gZu0vQcBmL6+xrk78XjGPAAAAAAAAAAA5gthPeHAmbodg2e5pL9wtBt+grqHOoU4AACAPwAAgD+mZLo9pJBNuZ1BezmK9rg00hA1Oyvsk7gAAIA/AACAPwDzRz3DbWS6WVWdu62WmTiAYAm7OJJOOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGe5VN5+pfiMAWyUTegDjAF0lEdAmddpI6KceHV9lChoBkdAZavVbzK9wmgHTegDaAhHQJndBcIJJGx1fZQoaAZHQFKB9Jz1bq1oB0uqaAhHQJngtbW3BpJ1fZQoaAZHQEoijeKsMiNoB0v0aAhHQJnk0YUFjd51fZQoaAZHQGIVjgAIY3xoB03oA2gIR0CZ5mE7nxJ/dX2UKGgGR0BlWAFmnO0LaAdN6ANoCEdAmeezCcf/3nV9lChoBkdAYGOzDXOGCmgHTegDaAhHQJnyKOvMbFV1fZQoaAZHQGT8yZBsyi5oB03oA2gIR0CaCijO9nK5dX2UKGgGR0Bk8HDP4VRDaAdN6ANoCEdAmgsYjW07bXV9lChoBkdAYAvwsoUi6mgHTegDaAhHQJoOJOj7AL11fZQoaAZHQGVoKnNxEORoB03oA2gIR0CaDyH4XXRPdX2UKGgGR0BhVP/echC/aAdN6ANoCEdAmhCAyM1jzHV9lChoBkdAcBFrd30PH2gHTcYBaAhHQJoRFSOzY291fZQoaAZHQGKsWLYPGyZoB03oA2gIR0CaEluQIUrTdX2UKGgGR0BhzhKraM72aAdN6ANoCEdAmhPf4REncHV9lChoBkdAOO/X5FgDzWgHS+doCEdAmhWNVzZHu3V9lChoBkdAQJRO1v2oN2gHS9doCEdAmhjpudf9gnV9lChoBkdAZIfQSi/O+2gHTegDaAhHQJoevL/0dzZ1fZQoaAZHQD7vAvcrRShoB0vyaAhHQJofkmdAgPp1fZQoaAZHQGSN5A6dUbVoB03oA2gIR0CaINarmyPddX2UKGgGR0BijgYgq3EyaAdN6ANoCEdAmiJP2Cdz4nV9lChoBkdAaHyqXnhbW2gHTegDaAhHQJopLyEtdzJ1fZQoaAZHQFzVHoHLRrtoB03oA2gIR0CaMj238XN1dX2UKGgGR0BjrLt7a7EpaAdN6ANoCEdAmjQw/xDst3V9lChoBkdAZJ7FqBVdX2gHTegDaAhHQJo1233Hq/x1fZQoaAZHQG7keAmReTpoB03dAWgIR0CaPX9W6shgdX2UKGgGR0BmNfo/zJ6qaAdN6ANoCEdAmkJBOtW+5HV9lChoBkdAYz5qsU7CBWgHTegDaAhHQJpFLujRD1J1fZQoaAZHQGP3Pnr6ciJoB03oA2gIR0CaWHz8P4EfdX2UKGgGR0BkSg2Ifr8jaAdN6ANoCEdAmlq1pPAO8XV9lChoBkdAY1LTPSlWO2gHTegDaAhHQJpbT3UQTVV1fZQoaAZHQGNMINNJvpBoB03oA2gIR0CaXJrwvxpddX2UKGgGR0Bk29gnc+JQaAdN6ANoCEdAmmAn6dlNDnV9lChoBkdAZjcQf6oES2gHTegDaAhHQJpj46ZH/cZ1fZQoaAZHQHJxL7TDwYtoB02/A2gIR0CaaeHyEtdzdX2UKGgGR0BjgSgdwNsnaAdN6ANoCEdAmmoAWSEDhnV9lChoBkdAY9Ta+vhZQ2gHTegDaAhHQJptc8yN4qx1fZQoaAZHQGIDtRFZxJdoB03oA2gIR0CadcSGrS3LdX2UKGgGR0BjSfhESdvsaAdN6ANoCEdAmoBpkK/mDHV9lChoBkdAcauMfzSThmgHTbICaAhHQJqBcDhcZ+B1fZQoaAZHQGVphqbjLjhoB03oA2gIR0CagnhY/3WXdX2UKGgGR0Bnvq2rn1WbaAdN6ANoCEdAmoRP336AOXV9lChoBkdAYcCcU/OdG2gHTegDaAhHQJqLDXlKbrl1fZQoaAZHQHBNCVW0Z3toB01GA2gIR0CajeDRtxdZdX2UKGgGR0Bi4PmA9V3maAdN6ANoCEdAmo5eNgjQiXV9lChoBkdAYzYejEehf2gHTegDaAhHQJqQR/MGHHp1fZQoaAZHQGPQqArhBJJoB03oA2gIR0CapZAQxvehdX2UKGgGR0BqPv2VVxS6aAdN6ANoCEdAmqefqxC6YnV9lChoBkdASuErNGEwnGgHS8RoCEdAmqp6hcqvvHV9lChoBkdAZTRbi6xxDWgHTegDaAhHQJqrdRwZOzp1fZQoaAZHQGK5HjQzDXRoB03oA2gIR0Car2c6vJRwdX2UKGgGR0BwwZyimEXdaAdNFAJoCEdAmrEGzKLbYnV9lChoBkdAZLB6hxo7FWgHTegDaAhHQJq20lzEJjV1fZQoaAZHQGdUUQTVUddoB03oA2gIR0CatvlgMMJAdX2UKGgGR0BjZRF5OafBaAdN6ANoCEdAmrvM85jpcHV9lChoBkdAYLqZ+hGpdmgHTegDaAhHQJrExSydFv11fZQoaAZHQGbB2v8qFytoB03oA2gIR0CazZn0TURWdX2UKGgGR0BnnAEB8x9HaAdN6ANoCEdAms5eSjgydnV9lChoBkdAZuHGgBcRlGgHTegDaAhHQJrPIeo1k2B1fZQoaAZHQE5ByMDOkcloB0vIaAhHQJrQvCm/Fit1fZQoaAZHQGgOOk+HJtBoB03oA2gIR0Ca1ggW8AaOdX2UKGgGR0BhhxoGpuMuaAdN6ANoCEdAmtjL0aqCH3V9lChoBkdAZEoh9LHuJGgHTegDaAhHQJrZS/etSyd1fZQoaAZHQGPqEyULUkRoB03oA2gIR0Ca8N0Cih38dX2UKGgGR0BlZL7uUliSaAdN6ANoCEdAmvPNHQQcxXV9lChoBkdAZZ7uMuOCG2gHTegDaAhHQJr3yhJyyUt1fZQoaAZHQGPY//WDpTxoB03oA2gIR0Ca+SXPJJXhdX2UKGgGR0BibrC53C9AaAdN6ANoCEdAmv5VLBbfQHV9lChoBkdAbWpfTkQwsWgHTdQDaAhHQJr+0o+fRNR1fZQoaAZHQGFTNsvZh8ZoB03oA2gIR0CbBivV3EAHdX2UKGgGR0Bl0+wzLwF1aAdN6ANoCEdAmwZS/CZWrHV9lChoBkdAYFInVG0/nmgHTegDaAhHQJsKLskY4yZ1fZQoaAZHQG+ZTX8O09hoB01uAWgIR0CbE+qrR0EHdX2UKGgGR0BiSa8SPEKmaAdN6ANoCEdAmxg3H7xd6nV9lChoBkdAY9AHnlnyu2gHTegDaAhHQJsY7tjTa0x1fZQoaAZHQGZaFjd56dFoB03oA2gIR0CbGaS00FbFdX2UKGgGR0BokiwB5ooNaAdN6ANoCEdAmxsvSDyvtHV9lChoBkdAZCNKr7wazmgHTegDaAhHQJsgIAR02cd1fZQoaAZHQGIsWVmjCYVoB03oA2gIR0CbIpMSK3uvdX2UKGgGR0BlS2dVea8ZaAdN6ANoCEdAmyMAeii7CnV9lChoBkdAY2vh2nsLOWgHTegDaAhHQJs8olqrR0F1fZQoaAZHQHAZoy0rsjVoB02FAWgIR0CbPt9PDYRNdX2UKGgGR0BhERimVJL/aAdN6ANoCEdAmz9hxcVxj3V9lChoBkdAZpR/EwWWQmgHTegDaAhHQJtC0YEW69V1fZQoaAZHQGUPDPnjhk1oB03oA2gIR0CbRAOwPiDNdX2UKGgGR0BjG1l5GBnSaAdN6ANoCEdAm0ifa+N96XV9lChoBkdAOZaJMxoIwGgHS9FoCEdAm0qxXfZVXHV9lChoBkdAYqq2MKkVOGgHTegDaAhHQJtNUmXw9aF1fZQoaAZHQGX11U2kzoFoB03oA2gIR0CbTW3IMjNZdX2UKGgGR0Bfdld1MdtEaAdN6ANoCEdAm1BspCrtFHV9lChoBkdAYSlNdJJ5FGgHTegDaAhHQJtaaCqZML51fZQoaAZHQHBRVeruIARoB034AWgIR0CbXPYUWVNYdX2UKGgGR0Bi14g5imVJaAdN6ANoCEdAm16yHZbpvHV9lChoBkdAY6OWv8qFy2gHTegDaAhHQJtgOGL1mJ51fZQoaAZHQGZP9T5wfhdoB03oA2gIR0CbYe4wyqMndX2UKGgGR0BksuEdvKlpaAdN6ANoCEdAm2dNdZ7ojnV9lChoBkdAbbSfgaWHDmgHTRYCaAhHQJtpdN9H+ZR1fZQoaAZHQGcZGFajesRoB03oA2gIR0Cbaixn3+MqdX2UKGgGR0BQcU1/DtPYaAdL5GgIR0CbapPzFuNxdX2UKGgGR0BlvIhfShJzaAdN6ANoCEdAm2qjnaFmF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}