Upload folder using huggingface_hub (#1)
Browse files- 8c636dbd8512b756625d3c722904ebc237732ff11dc7c60fd7ebf21a1d091335 (fa3e26c20813e16a087d58f2dafd2bbefdb63f18)
- 2e11cbeb4c9cf97474f762ef7f915dcb05fb0a0471ba43963edf2ddc8383e162 (083ffdf111ff60b2184024fc23c3ed55e36fa482)
- README.md +84 -0
- config.json +51 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- modeling_gritlm7b.py +1422 -0
- plots.png +0 -0
- smash_config.json +27 -0
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
3 |
+
metrics:
|
4 |
+
- memory_disk
|
5 |
+
- memory_inference
|
6 |
+
- inference_latency
|
7 |
+
- inference_throughput
|
8 |
+
- inference_CO2_emissions
|
9 |
+
- inference_energy_consumption
|
10 |
+
tags:
|
11 |
+
- pruna-ai
|
12 |
+
---
|
13 |
+
<!-- header start -->
|
14 |
+
<!-- 200823 -->
|
15 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
16 |
+
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
|
17 |
+
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
18 |
+
</a>
|
19 |
+
</div>
|
20 |
+
<!-- header end -->
|
21 |
+
|
22 |
+
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
|
23 |
+
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
|
24 |
+
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
25 |
+
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/CP4VSgck)
|
26 |
+
|
27 |
+
# Simply make AI models cheaper, smaller, faster, and greener!
|
28 |
+
|
29 |
+
- Give a thumbs up if you like this model!
|
30 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
31 |
+
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
32 |
+
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
33 |
+
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
|
34 |
+
|
35 |
+
## Results
|
36 |
+
|
37 |
+
![image info](./plots.png)
|
38 |
+
|
39 |
+
**Frequently Asked Questions**
|
40 |
+
- ***How does the compression work?*** The model is compressed with llm-int8.
|
41 |
+
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
42 |
+
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
43 |
+
- ***What is the model format?*** We use safetensors.
|
44 |
+
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
|
45 |
+
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
46 |
+
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
47 |
+
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
|
48 |
+
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
|
49 |
+
|
50 |
+
## Setup
|
51 |
+
|
52 |
+
You can run the smashed model with these steps:
|
53 |
+
|
54 |
+
0. Check requirements from the original repo GritLM/GritLM-7B installed. In particular, check python, cuda, and transformers versions.
|
55 |
+
1. Make sure that you have installed quantization related packages.
|
56 |
+
```bash
|
57 |
+
pip install transformers accelerate bitsandbytes>0.37.0
|
58 |
+
```
|
59 |
+
2. Load & run the model.
|
60 |
+
```python
|
61 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
62 |
+
|
63 |
+
model = AutoModelForCausalLM.from_pretrained("PrunaAI/GritLM-GritLM-7B-bnb-4bit-smashed",
|
64 |
+
trust_remote_code=True)
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained("GritLM/GritLM-7B")
|
66 |
+
|
67 |
+
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
68 |
+
|
69 |
+
outputs = model.generate(input_ids, max_new_tokens=216)
|
70 |
+
tokenizer.decode(outputs[0])
|
71 |
+
```
|
72 |
+
|
73 |
+
## Configurations
|
74 |
+
|
75 |
+
The configuration info are in `smash_config.json`.
|
76 |
+
|
77 |
+
## Credits & License
|
78 |
+
|
79 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model GritLM/GritLM-7B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
80 |
+
|
81 |
+
## Want to compress other models?
|
82 |
+
|
83 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
84 |
+
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/tmp/tmp2wct6ej9",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoModel": "GritLM/GritLM-7B--modeling_gritlm7b.MistralModel",
|
9 |
+
"AutoModelForCausalLM": "modeling_gritlm7b.MistralForCausalLM",
|
10 |
+
"AutoModelForSequenceClassification": "GritLM/GritLM-7B--modeling_gritlm7b.MistralForSequenceClassification"
|
11 |
+
},
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"eos_token_id": 2,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 4096,
|
16 |
+
"id2label": {
|
17 |
+
"0": "LABEL_0"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 14336,
|
21 |
+
"label2id": {
|
22 |
+
"LABEL_0": 0
|
23 |
+
},
|
24 |
+
"max_position_embeddings": 32768,
|
25 |
+
"model_type": "mistral",
|
26 |
+
"num_attention_heads": 32,
|
27 |
+
"num_hidden_layers": 32,
|
28 |
+
"num_key_value_heads": 8,
|
29 |
+
"quantization_config": {
|
30 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
31 |
+
"bnb_4bit_quant_type": "fp4",
|
32 |
+
"bnb_4bit_use_double_quant": true,
|
33 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
34 |
+
"llm_int8_has_fp16_weight": false,
|
35 |
+
"llm_int8_skip_modules": [
|
36 |
+
"lm_head"
|
37 |
+
],
|
38 |
+
"llm_int8_threshold": 6.0,
|
39 |
+
"load_in_4bit": true,
|
40 |
+
"load_in_8bit": false,
|
41 |
+
"quant_method": "bitsandbytes"
|
42 |
+
},
|
43 |
+
"rms_norm_eps": 1e-05,
|
44 |
+
"rope_theta": 10000.0,
|
45 |
+
"sliding_window": 4096,
|
46 |
+
"tie_word_embeddings": false,
|
47 |
+
"torch_dtype": "float16",
|
48 |
+
"transformers_version": "4.37.1",
|
49 |
+
"use_cache": true,
|
50 |
+
"vocab_size": 32000
|
51 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.37.1"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a674cb4bb36dde94f1487bf15187bc75a007263f44090c66d9f409e068db231b
|
3 |
+
size 4125687624
|
modeling_gritlm7b.py
ADDED
@@ -0,0 +1,1422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Mistral model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
import os
|
24 |
+
import warnings
|
25 |
+
from typing import List, Optional, Tuple, Union
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.nn.functional as F
|
29 |
+
import torch.utils.checkpoint
|
30 |
+
from torch import nn
|
31 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
32 |
+
|
33 |
+
from transformers.activations import ACT2FN
|
34 |
+
from transformers.cache_utils import Cache, DynamicCache
|
35 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
36 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
37 |
+
from transformers.modeling_utils import PreTrainedModel
|
38 |
+
from transformers.utils import (
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
is_flash_attn_2_available,
|
42 |
+
is_flash_attn_greater_or_equal_2_10,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from transformers import MistralConfig
|
47 |
+
|
48 |
+
|
49 |
+
# transformers has a bug where it will try to import everything from a custom model file unless there's try/except
|
50 |
+
try:
|
51 |
+
if is_flash_attn_2_available():
|
52 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
53 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
54 |
+
|
55 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
56 |
+
except:
|
57 |
+
pass
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
_CONFIG_FOR_DOC = "MistralConfig"
|
62 |
+
|
63 |
+
|
64 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
65 |
+
def _get_unpad_data(attention_mask):
|
66 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
67 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
68 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
69 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
70 |
+
return (
|
71 |
+
indices,
|
72 |
+
cu_seqlens,
|
73 |
+
max_seqlen_in_batch,
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
|
78 |
+
class MistralRMSNorm(nn.Module):
|
79 |
+
def __init__(self, hidden_size, eps=1e-6):
|
80 |
+
"""
|
81 |
+
MistralRMSNorm is equivalent to T5LayerNorm
|
82 |
+
"""
|
83 |
+
super().__init__()
|
84 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
85 |
+
self.variance_epsilon = eps
|
86 |
+
|
87 |
+
def forward(self, hidden_states):
|
88 |
+
input_dtype = hidden_states.dtype
|
89 |
+
hidden_states = hidden_states.to(torch.float32)
|
90 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
91 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
92 |
+
return self.weight * hidden_states.to(input_dtype)
|
93 |
+
|
94 |
+
|
95 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
|
96 |
+
class MistralRotaryEmbedding(nn.Module):
|
97 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
self.dim = dim
|
101 |
+
self.max_position_embeddings = max_position_embeddings
|
102 |
+
self.base = base
|
103 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
104 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
105 |
+
|
106 |
+
# Build here to make `torch.jit.trace` work.
|
107 |
+
self._set_cos_sin_cache(
|
108 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
109 |
+
)
|
110 |
+
|
111 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
112 |
+
self.max_seq_len_cached = seq_len
|
113 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
114 |
+
|
115 |
+
freqs = torch.outer(t, self.inv_freq)
|
116 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
117 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
118 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
119 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
120 |
+
|
121 |
+
def forward(self, x, seq_len=None):
|
122 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
123 |
+
if seq_len > self.max_seq_len_cached:
|
124 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
125 |
+
|
126 |
+
return (
|
127 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
128 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
133 |
+
def rotate_half(x):
|
134 |
+
"""Rotates half the hidden dims of the input."""
|
135 |
+
x1 = x[..., : x.shape[-1] // 2]
|
136 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
137 |
+
return torch.cat((-x2, x1), dim=-1)
|
138 |
+
|
139 |
+
|
140 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
141 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
142 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
q (`torch.Tensor`): The query tensor.
|
146 |
+
k (`torch.Tensor`): The key tensor.
|
147 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
148 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
149 |
+
position_ids (`torch.Tensor`):
|
150 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
151 |
+
used to pass offsetted position ids when working with a KV-cache.
|
152 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
153 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
154 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
155 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
156 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
157 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
158 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
159 |
+
Returns:
|
160 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
161 |
+
"""
|
162 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
163 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
164 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
165 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
166 |
+
return q_embed, k_embed
|
167 |
+
|
168 |
+
|
169 |
+
class MistralMLP(nn.Module):
|
170 |
+
def __init__(self, config):
|
171 |
+
super().__init__()
|
172 |
+
self.config = config
|
173 |
+
self.hidden_size = config.hidden_size
|
174 |
+
self.intermediate_size = config.intermediate_size
|
175 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
176 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
177 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
178 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
182 |
+
|
183 |
+
|
184 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
185 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
186 |
+
"""
|
187 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
188 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
189 |
+
"""
|
190 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
191 |
+
if n_rep == 1:
|
192 |
+
return hidden_states
|
193 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
194 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
195 |
+
|
196 |
+
|
197 |
+
class MistralAttention(nn.Module):
|
198 |
+
"""
|
199 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
200 |
+
and "Generating Long Sequences with Sparse Transformers".
|
201 |
+
"""
|
202 |
+
|
203 |
+
def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None):
|
204 |
+
super().__init__()
|
205 |
+
self.config = config
|
206 |
+
self.layer_idx = layer_idx
|
207 |
+
if layer_idx is None:
|
208 |
+
logger.warning_once(
|
209 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
210 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
211 |
+
"when creating this class."
|
212 |
+
)
|
213 |
+
|
214 |
+
self.hidden_size = config.hidden_size
|
215 |
+
self.num_heads = config.num_attention_heads
|
216 |
+
self.head_dim = self.hidden_size // self.num_heads
|
217 |
+
self.num_key_value_heads = config.num_key_value_heads
|
218 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
219 |
+
self.max_position_embeddings = config.max_position_embeddings
|
220 |
+
self.rope_theta = config.rope_theta
|
221 |
+
self.attention_dropout = config.attention_dropout
|
222 |
+
|
223 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
224 |
+
raise ValueError(
|
225 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
226 |
+
f" and `num_heads`: {self.num_heads})."
|
227 |
+
)
|
228 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
229 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
230 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
231 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
232 |
+
|
233 |
+
self.rotary_emb = MistralRotaryEmbedding(
|
234 |
+
self.head_dim,
|
235 |
+
max_position_embeddings=self.max_position_embeddings,
|
236 |
+
base=self.rope_theta,
|
237 |
+
)
|
238 |
+
|
239 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
240 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
241 |
+
|
242 |
+
def forward(
|
243 |
+
self,
|
244 |
+
hidden_states: torch.Tensor,
|
245 |
+
attention_mask: Optional[torch.Tensor] = None,
|
246 |
+
position_ids: Optional[torch.LongTensor] = None,
|
247 |
+
past_key_value: Optional[Cache] = None,
|
248 |
+
output_attentions: bool = False,
|
249 |
+
use_cache: bool = False,
|
250 |
+
**kwargs,
|
251 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
252 |
+
if "padding_mask" in kwargs:
|
253 |
+
warnings.warn(
|
254 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
255 |
+
)
|
256 |
+
bsz, q_len, _ = hidden_states.size()
|
257 |
+
|
258 |
+
query_states = self.q_proj(hidden_states)
|
259 |
+
key_states = self.k_proj(hidden_states)
|
260 |
+
value_states = self.v_proj(hidden_states)
|
261 |
+
|
262 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
263 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
264 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
265 |
+
|
266 |
+
kv_seq_len = key_states.shape[-2]
|
267 |
+
if past_key_value is not None:
|
268 |
+
if self.layer_idx is None:
|
269 |
+
raise ValueError(
|
270 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
271 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
272 |
+
"with a layer index."
|
273 |
+
)
|
274 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
275 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
276 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
277 |
+
|
278 |
+
if past_key_value is not None:
|
279 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
280 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
281 |
+
|
282 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
283 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
284 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
285 |
+
|
286 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
287 |
+
|
288 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
289 |
+
raise ValueError(
|
290 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
291 |
+
f" {attn_weights.size()}"
|
292 |
+
)
|
293 |
+
|
294 |
+
if attention_mask is not None:
|
295 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
296 |
+
raise ValueError(
|
297 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
298 |
+
)
|
299 |
+
|
300 |
+
attn_weights = attn_weights + attention_mask
|
301 |
+
|
302 |
+
# upcast attention to fp32
|
303 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
304 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
305 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
306 |
+
|
307 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
308 |
+
raise ValueError(
|
309 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
310 |
+
f" {attn_output.size()}"
|
311 |
+
)
|
312 |
+
|
313 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
314 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
315 |
+
|
316 |
+
attn_output = self.o_proj(attn_output)
|
317 |
+
|
318 |
+
if not output_attentions:
|
319 |
+
attn_weights = None
|
320 |
+
|
321 |
+
return attn_output, attn_weights, past_key_value
|
322 |
+
|
323 |
+
|
324 |
+
class MistralFlashAttention2(MistralAttention):
|
325 |
+
"""
|
326 |
+
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
|
327 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
328 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
329 |
+
"""
|
330 |
+
|
331 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
332 |
+
def __init__(self, *args, **kwargs):
|
333 |
+
super().__init__(*args, **kwargs)
|
334 |
+
|
335 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
336 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
337 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
338 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
339 |
+
|
340 |
+
def forward(
|
341 |
+
self,
|
342 |
+
hidden_states: torch.Tensor,
|
343 |
+
attention_mask: Optional[torch.Tensor] = None,
|
344 |
+
position_ids: Optional[torch.LongTensor] = None,
|
345 |
+
past_key_value: Optional[Cache] = None,
|
346 |
+
output_attentions: bool = False,
|
347 |
+
use_cache: bool = False,
|
348 |
+
is_causal: bool = True,
|
349 |
+
**kwargs,
|
350 |
+
):
|
351 |
+
if "padding_mask" in kwargs:
|
352 |
+
warnings.warn(
|
353 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
354 |
+
)
|
355 |
+
|
356 |
+
# overwrite attention_mask with padding_mask
|
357 |
+
attention_mask = kwargs.pop("padding_mask")
|
358 |
+
bsz, q_len, _ = hidden_states.size()
|
359 |
+
|
360 |
+
query_states = self.q_proj(hidden_states)
|
361 |
+
key_states = self.k_proj(hidden_states)
|
362 |
+
value_states = self.v_proj(hidden_states)
|
363 |
+
|
364 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
365 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
366 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
367 |
+
|
368 |
+
kv_seq_len = key_states.shape[-2]
|
369 |
+
if past_key_value is not None:
|
370 |
+
if self.layer_idx is None:
|
371 |
+
raise ValueError(
|
372 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
373 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
374 |
+
"with a layer index."
|
375 |
+
)
|
376 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
377 |
+
|
378 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
379 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
380 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
381 |
+
|
382 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
383 |
+
|
384 |
+
use_sliding_windows = (
|
385 |
+
_flash_supports_window_size
|
386 |
+
and getattr(self.config, "sliding_window", None) is not None
|
387 |
+
and kv_seq_len > self.config.sliding_window
|
388 |
+
)
|
389 |
+
|
390 |
+
if not _flash_supports_window_size:
|
391 |
+
logger.warning_once(
|
392 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
393 |
+
" make sure to upgrade flash-attn library."
|
394 |
+
)
|
395 |
+
|
396 |
+
if past_key_value is not None:
|
397 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
398 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
399 |
+
if (
|
400 |
+
getattr(self.config, "sliding_window", None) is not None
|
401 |
+
and kv_seq_len > self.config.sliding_window
|
402 |
+
and cache_has_contents
|
403 |
+
):
|
404 |
+
slicing_tokens = 1 - self.config.sliding_window
|
405 |
+
|
406 |
+
past_key = past_key_value[self.layer_idx][0]
|
407 |
+
past_value = past_key_value[self.layer_idx][1]
|
408 |
+
|
409 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
410 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
411 |
+
|
412 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
413 |
+
raise ValueError(
|
414 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
415 |
+
f" {past_key.shape}"
|
416 |
+
)
|
417 |
+
|
418 |
+
if attention_mask is not None:
|
419 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
420 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
421 |
+
|
422 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
423 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
424 |
+
|
425 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
426 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
427 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
428 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
429 |
+
|
430 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
431 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
432 |
+
# cast them back in float16 just to be sure everything works as expected.
|
433 |
+
input_dtype = query_states.dtype
|
434 |
+
if input_dtype == torch.float32:
|
435 |
+
if torch.is_autocast_enabled():
|
436 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
437 |
+
# Handle the case where the model is quantized
|
438 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
439 |
+
target_dtype = self.config._pre_quantization_dtype
|
440 |
+
else:
|
441 |
+
target_dtype = self.q_proj.weight.dtype
|
442 |
+
|
443 |
+
logger.warning_once(
|
444 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
445 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
446 |
+
f" {target_dtype}."
|
447 |
+
)
|
448 |
+
|
449 |
+
query_states = query_states.to(target_dtype)
|
450 |
+
key_states = key_states.to(target_dtype)
|
451 |
+
value_states = value_states.to(target_dtype)
|
452 |
+
|
453 |
+
# Reashape to the expected shape for Flash Attention
|
454 |
+
query_states = query_states.transpose(1, 2)
|
455 |
+
key_states = key_states.transpose(1, 2)
|
456 |
+
value_states = value_states.transpose(1, 2)
|
457 |
+
|
458 |
+
attn_output = self._flash_attention_forward(
|
459 |
+
query_states,
|
460 |
+
key_states,
|
461 |
+
value_states,
|
462 |
+
attention_mask,
|
463 |
+
q_len,
|
464 |
+
dropout=dropout_rate,
|
465 |
+
use_sliding_windows=use_sliding_windows,
|
466 |
+
is_causal=is_causal,
|
467 |
+
)
|
468 |
+
|
469 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
470 |
+
attn_output = self.o_proj(attn_output)
|
471 |
+
|
472 |
+
if not output_attentions:
|
473 |
+
attn_weights = None
|
474 |
+
|
475 |
+
return attn_output, attn_weights, past_key_value
|
476 |
+
|
477 |
+
def _flash_attention_forward(
|
478 |
+
self,
|
479 |
+
query_states,
|
480 |
+
key_states,
|
481 |
+
value_states,
|
482 |
+
attention_mask,
|
483 |
+
query_length,
|
484 |
+
dropout=0.0,
|
485 |
+
softmax_scale=None,
|
486 |
+
use_sliding_windows=False,
|
487 |
+
is_causal=True,
|
488 |
+
):
|
489 |
+
"""
|
490 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
491 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
492 |
+
|
493 |
+
Args:
|
494 |
+
query_states (`torch.Tensor`):
|
495 |
+
Input query states to be passed to Flash Attention API
|
496 |
+
key_states (`torch.Tensor`):
|
497 |
+
Input key states to be passed to Flash Attention API
|
498 |
+
value_states (`torch.Tensor`):
|
499 |
+
Input value states to be passed to Flash Attention API
|
500 |
+
attention_mask (`torch.Tensor`):
|
501 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
502 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
503 |
+
dropout (`int`, *optional*):
|
504 |
+
Attention dropout
|
505 |
+
softmax_scale (`float`, *optional*):
|
506 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
507 |
+
use_sliding_windows (`bool`, *optional*):
|
508 |
+
Whether to activate sliding window attention.
|
509 |
+
"""
|
510 |
+
if not self._flash_attn_uses_top_left_mask:
|
511 |
+
causal = is_causal
|
512 |
+
else:
|
513 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
514 |
+
causal = is_causal and query_length != 1
|
515 |
+
|
516 |
+
# Contains at least one padding token in the sequence
|
517 |
+
if attention_mask is not None:
|
518 |
+
batch_size = query_states.shape[0]
|
519 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
520 |
+
query_states, key_states, value_states, attention_mask, query_length
|
521 |
+
)
|
522 |
+
|
523 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
524 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
525 |
+
|
526 |
+
if not use_sliding_windows:
|
527 |
+
attn_output_unpad = flash_attn_varlen_func(
|
528 |
+
query_states,
|
529 |
+
key_states,
|
530 |
+
value_states,
|
531 |
+
cu_seqlens_q=cu_seqlens_q,
|
532 |
+
cu_seqlens_k=cu_seqlens_k,
|
533 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
534 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
535 |
+
dropout_p=dropout,
|
536 |
+
softmax_scale=softmax_scale,
|
537 |
+
causal=causal,
|
538 |
+
)
|
539 |
+
else:
|
540 |
+
attn_output_unpad = flash_attn_varlen_func(
|
541 |
+
query_states,
|
542 |
+
key_states,
|
543 |
+
value_states,
|
544 |
+
cu_seqlens_q=cu_seqlens_q,
|
545 |
+
cu_seqlens_k=cu_seqlens_k,
|
546 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
547 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
548 |
+
dropout_p=dropout,
|
549 |
+
softmax_scale=softmax_scale,
|
550 |
+
causal=causal,
|
551 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
552 |
+
)
|
553 |
+
|
554 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
555 |
+
else:
|
556 |
+
if not use_sliding_windows:
|
557 |
+
attn_output = flash_attn_func(
|
558 |
+
query_states,
|
559 |
+
key_states,
|
560 |
+
value_states,
|
561 |
+
dropout,
|
562 |
+
softmax_scale=softmax_scale,
|
563 |
+
causal=causal,
|
564 |
+
)
|
565 |
+
else:
|
566 |
+
attn_output = flash_attn_func(
|
567 |
+
query_states,
|
568 |
+
key_states,
|
569 |
+
value_states,
|
570 |
+
dropout,
|
571 |
+
softmax_scale=softmax_scale,
|
572 |
+
causal=causal,
|
573 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
574 |
+
)
|
575 |
+
|
576 |
+
return attn_output
|
577 |
+
|
578 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
579 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
580 |
+
|
581 |
+
# On the first iteration we need to properly re-create the padding mask
|
582 |
+
# by slicing it on the proper place
|
583 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
584 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
585 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
586 |
+
|
587 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
588 |
+
|
589 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
590 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
591 |
+
|
592 |
+
if query_length == kv_seq_len:
|
593 |
+
query_layer = index_first_axis(
|
594 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
595 |
+
)
|
596 |
+
cu_seqlens_q = cu_seqlens_k
|
597 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
598 |
+
indices_q = indices_k
|
599 |
+
elif query_length == 1:
|
600 |
+
max_seqlen_in_batch_q = 1
|
601 |
+
cu_seqlens_q = torch.arange(
|
602 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
603 |
+
) # There is a memcpy here, that is very bad.
|
604 |
+
indices_q = cu_seqlens_q[:-1]
|
605 |
+
query_layer = query_layer.squeeze(1)
|
606 |
+
else:
|
607 |
+
# The -q_len: slice assumes left padding.
|
608 |
+
attention_mask = attention_mask[:, -query_length:]
|
609 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
610 |
+
|
611 |
+
return (
|
612 |
+
query_layer,
|
613 |
+
key_layer,
|
614 |
+
value_layer,
|
615 |
+
indices_q,
|
616 |
+
(cu_seqlens_q, cu_seqlens_k),
|
617 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
618 |
+
)
|
619 |
+
|
620 |
+
|
621 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral
|
622 |
+
class MistralSdpaAttention(MistralAttention):
|
623 |
+
"""
|
624 |
+
Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
625 |
+
`MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
626 |
+
SDPA API.
|
627 |
+
"""
|
628 |
+
|
629 |
+
# Adapted from MistralAttention.forward
|
630 |
+
def forward(
|
631 |
+
self,
|
632 |
+
hidden_states: torch.Tensor,
|
633 |
+
attention_mask: Optional[torch.Tensor] = None,
|
634 |
+
position_ids: Optional[torch.LongTensor] = None,
|
635 |
+
past_key_value: Optional[Cache] = None,
|
636 |
+
output_attentions: bool = False,
|
637 |
+
use_cache: bool = False,
|
638 |
+
is_causal: bool = True,
|
639 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
640 |
+
if output_attentions:
|
641 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
642 |
+
logger.warning_once(
|
643 |
+
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
644 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
645 |
+
)
|
646 |
+
return super().forward(
|
647 |
+
hidden_states=hidden_states,
|
648 |
+
attention_mask=attention_mask,
|
649 |
+
position_ids=position_ids,
|
650 |
+
past_key_value=past_key_value,
|
651 |
+
output_attentions=output_attentions,
|
652 |
+
use_cache=use_cache,
|
653 |
+
is_causal=is_causal,
|
654 |
+
)
|
655 |
+
|
656 |
+
bsz, q_len, _ = hidden_states.size()
|
657 |
+
|
658 |
+
query_states = self.q_proj(hidden_states)
|
659 |
+
key_states = self.k_proj(hidden_states)
|
660 |
+
value_states = self.v_proj(hidden_states)
|
661 |
+
|
662 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
663 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
664 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
665 |
+
|
666 |
+
kv_seq_len = key_states.shape[-2]
|
667 |
+
if past_key_value is not None:
|
668 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
669 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
670 |
+
|
671 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
672 |
+
|
673 |
+
if past_key_value is not None:
|
674 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
675 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
676 |
+
|
677 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
678 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
679 |
+
|
680 |
+
if attention_mask is not None:
|
681 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
682 |
+
raise ValueError(
|
683 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
684 |
+
)
|
685 |
+
|
686 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
687 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
688 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
689 |
+
query_states = query_states.contiguous()
|
690 |
+
key_states = key_states.contiguous()
|
691 |
+
value_states = value_states.contiguous()
|
692 |
+
|
693 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
694 |
+
query_states,
|
695 |
+
key_states,
|
696 |
+
value_states,
|
697 |
+
attn_mask=attention_mask,
|
698 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
699 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
700 |
+
is_causal=is_causal and attention_mask is None and q_len > 1,
|
701 |
+
)
|
702 |
+
|
703 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
704 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
705 |
+
|
706 |
+
attn_output = self.o_proj(attn_output)
|
707 |
+
|
708 |
+
return attn_output, None, past_key_value
|
709 |
+
|
710 |
+
|
711 |
+
MISTRAL_ATTENTION_CLASSES = {
|
712 |
+
"eager": MistralAttention,
|
713 |
+
"flash_attention_2": MistralFlashAttention2,
|
714 |
+
"sdpa": MistralSdpaAttention,
|
715 |
+
}
|
716 |
+
|
717 |
+
|
718 |
+
class MistralDecoderLayer(nn.Module):
|
719 |
+
def __init__(self, config: MistralConfig, layer_idx: int):
|
720 |
+
super().__init__()
|
721 |
+
self.hidden_size = config.hidden_size
|
722 |
+
|
723 |
+
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
724 |
+
|
725 |
+
self.mlp = MistralMLP(config)
|
726 |
+
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
727 |
+
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
728 |
+
|
729 |
+
def forward(
|
730 |
+
self,
|
731 |
+
hidden_states: torch.Tensor,
|
732 |
+
attention_mask: Optional[torch.Tensor] = None,
|
733 |
+
position_ids: Optional[torch.LongTensor] = None,
|
734 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
735 |
+
output_attentions: Optional[bool] = False,
|
736 |
+
use_cache: Optional[bool] = False,
|
737 |
+
is_causal: Optional[bool] = True,
|
738 |
+
**kwargs,
|
739 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
740 |
+
if "padding_mask" in kwargs:
|
741 |
+
warnings.warn(
|
742 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
743 |
+
)
|
744 |
+
"""
|
745 |
+
Args:
|
746 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
747 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
748 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
749 |
+
output_attentions (`bool`, *optional*):
|
750 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
751 |
+
returned tensors for more detail.
|
752 |
+
use_cache (`bool`, *optional*):
|
753 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
754 |
+
(see `past_key_values`).
|
755 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
756 |
+
"""
|
757 |
+
|
758 |
+
residual = hidden_states
|
759 |
+
|
760 |
+
hidden_states = self.input_layernorm(hidden_states)
|
761 |
+
|
762 |
+
# Self Attention
|
763 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
764 |
+
hidden_states=hidden_states,
|
765 |
+
attention_mask=attention_mask,
|
766 |
+
position_ids=position_ids,
|
767 |
+
past_key_value=past_key_value,
|
768 |
+
output_attentions=output_attentions,
|
769 |
+
use_cache=use_cache,
|
770 |
+
is_causal=is_causal,
|
771 |
+
)
|
772 |
+
hidden_states = residual + hidden_states
|
773 |
+
|
774 |
+
# Fully Connected
|
775 |
+
residual = hidden_states
|
776 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
777 |
+
hidden_states = self.mlp(hidden_states)
|
778 |
+
hidden_states = residual + hidden_states
|
779 |
+
|
780 |
+
outputs = (hidden_states,)
|
781 |
+
|
782 |
+
if output_attentions:
|
783 |
+
outputs += (self_attn_weights,)
|
784 |
+
|
785 |
+
if use_cache:
|
786 |
+
outputs += (present_key_value,)
|
787 |
+
|
788 |
+
return outputs
|
789 |
+
|
790 |
+
|
791 |
+
MISTRAL_START_DOCSTRING = r"""
|
792 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
793 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
794 |
+
etc.)
|
795 |
+
|
796 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
797 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
798 |
+
and behavior.
|
799 |
+
|
800 |
+
Parameters:
|
801 |
+
config ([`MistralConfig`]):
|
802 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
803 |
+
load the weights associated with the model, only the configuration. Check out the
|
804 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
805 |
+
"""
|
806 |
+
|
807 |
+
|
808 |
+
@add_start_docstrings(
|
809 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
810 |
+
MISTRAL_START_DOCSTRING,
|
811 |
+
)
|
812 |
+
class MistralPreTrainedModel(PreTrainedModel):
|
813 |
+
config_class = MistralConfig
|
814 |
+
base_model_prefix = "model"
|
815 |
+
supports_gradient_checkpointing = True
|
816 |
+
_no_split_modules = ["MistralDecoderLayer"]
|
817 |
+
_skip_keys_device_placement = "past_key_values"
|
818 |
+
_supports_flash_attn_2 = True
|
819 |
+
_supports_sdpa = True
|
820 |
+
_supports_cache_class = True
|
821 |
+
|
822 |
+
def _init_weights(self, module):
|
823 |
+
std = self.config.initializer_range
|
824 |
+
if isinstance(module, nn.Linear):
|
825 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
826 |
+
if module.bias is not None:
|
827 |
+
module.bias.data.zero_()
|
828 |
+
elif isinstance(module, nn.Embedding):
|
829 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
830 |
+
if module.padding_idx is not None:
|
831 |
+
module.weight.data[module.padding_idx].zero_()
|
832 |
+
|
833 |
+
|
834 |
+
MISTRAL_INPUTS_DOCSTRING = r"""
|
835 |
+
Args:
|
836 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
837 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
838 |
+
it.
|
839 |
+
|
840 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
841 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
842 |
+
|
843 |
+
[What are input IDs?](../glossary#input-ids)
|
844 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
845 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
846 |
+
|
847 |
+
- 1 for tokens that are **not masked**,
|
848 |
+
- 0 for tokens that are **masked**.
|
849 |
+
|
850 |
+
[What are attention masks?](../glossary#attention-mask)
|
851 |
+
|
852 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
853 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
854 |
+
|
855 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
856 |
+
`past_key_values`).
|
857 |
+
|
858 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
859 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
860 |
+
information on the default strategy.
|
861 |
+
|
862 |
+
- 1 indicates the head is **not masked**,
|
863 |
+
- 0 indicates the head is **masked**.
|
864 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
865 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
866 |
+
config.n_positions - 1]`.
|
867 |
+
|
868 |
+
[What are position IDs?](../glossary#position-ids)
|
869 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
870 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
871 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
872 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
873 |
+
|
874 |
+
Two formats are allowed:
|
875 |
+
- a [`~cache_utils.Cache`] instance;
|
876 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
877 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
878 |
+
cache format.
|
879 |
+
|
880 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
881 |
+
legacy cache format will be returned.
|
882 |
+
|
883 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
884 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
885 |
+
of shape `(batch_size, sequence_length)`.
|
886 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
887 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
888 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
889 |
+
model's internal embedding lookup matrix.
|
890 |
+
use_cache (`bool`, *optional*):
|
891 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
892 |
+
`past_key_values`).
|
893 |
+
output_attentions (`bool`, *optional*):
|
894 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
895 |
+
tensors for more detail.
|
896 |
+
output_hidden_states (`bool`, *optional*):
|
897 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
898 |
+
more detail.
|
899 |
+
return_dict (`bool`, *optional*):
|
900 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
901 |
+
"""
|
902 |
+
|
903 |
+
|
904 |
+
@add_start_docstrings(
|
905 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
906 |
+
MISTRAL_START_DOCSTRING,
|
907 |
+
)
|
908 |
+
class MistralModel(MistralPreTrainedModel):
|
909 |
+
"""
|
910 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
911 |
+
|
912 |
+
Args:
|
913 |
+
config: MistralConfig
|
914 |
+
"""
|
915 |
+
|
916 |
+
def __init__(self, config: MistralConfig):
|
917 |
+
super().__init__(config)
|
918 |
+
self.padding_idx = config.pad_token_id
|
919 |
+
self.vocab_size = config.vocab_size
|
920 |
+
|
921 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
922 |
+
self.layers = nn.ModuleList(
|
923 |
+
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
924 |
+
)
|
925 |
+
self._attn_implementation = config._attn_implementation
|
926 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
927 |
+
|
928 |
+
self.gradient_checkpointing = False
|
929 |
+
# Initialize weights and apply final processing
|
930 |
+
self.post_init()
|
931 |
+
|
932 |
+
def get_input_embeddings(self):
|
933 |
+
return self.embed_tokens
|
934 |
+
|
935 |
+
def set_input_embeddings(self, value):
|
936 |
+
self.embed_tokens = value
|
937 |
+
|
938 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
939 |
+
def forward(
|
940 |
+
self,
|
941 |
+
input_ids: torch.LongTensor = None,
|
942 |
+
attention_mask: Optional[torch.Tensor] = None,
|
943 |
+
position_ids: Optional[torch.LongTensor] = None,
|
944 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
945 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
946 |
+
use_cache: Optional[bool] = None,
|
947 |
+
output_attentions: Optional[bool] = None,
|
948 |
+
output_hidden_states: Optional[bool] = None,
|
949 |
+
return_dict: Optional[bool] = None,
|
950 |
+
labels: Optional[torch.LongTensor] = None,
|
951 |
+
instruction_lens=None,
|
952 |
+
is_causal: Optional[bool] = True,
|
953 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
954 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
955 |
+
output_hidden_states = (
|
956 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
957 |
+
)
|
958 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
959 |
+
|
960 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
961 |
+
|
962 |
+
# retrieve input_ids and inputs_embeds
|
963 |
+
if input_ids is not None and inputs_embeds is not None:
|
964 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
965 |
+
elif input_ids is not None:
|
966 |
+
batch_size, seq_length = input_ids.shape
|
967 |
+
elif inputs_embeds is not None:
|
968 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
969 |
+
else:
|
970 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
971 |
+
|
972 |
+
if self.gradient_checkpointing and self.training:
|
973 |
+
if use_cache:
|
974 |
+
logger.warning_once(
|
975 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
976 |
+
)
|
977 |
+
use_cache = False
|
978 |
+
|
979 |
+
past_key_values_length = 0
|
980 |
+
|
981 |
+
if use_cache:
|
982 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
983 |
+
if use_legacy_cache:
|
984 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
985 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
986 |
+
|
987 |
+
if position_ids is None:
|
988 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
989 |
+
position_ids = torch.arange(
|
990 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
991 |
+
)
|
992 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
993 |
+
else:
|
994 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
995 |
+
|
996 |
+
if inputs_embeds is None:
|
997 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
998 |
+
|
999 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
1000 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1001 |
+
if is_padding_right:
|
1002 |
+
raise ValueError(
|
1003 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1004 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
1005 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
if self._attn_implementation == "flash_attention_2":
|
1009 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1010 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1011 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1012 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1013 |
+
if is_causal:
|
1014 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1015 |
+
attention_mask,
|
1016 |
+
(batch_size, seq_length),
|
1017 |
+
inputs_embeds,
|
1018 |
+
past_key_values_length,
|
1019 |
+
)
|
1020 |
+
else:
|
1021 |
+
attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
1022 |
+
attention_mask, inputs_embeds.dtype
|
1023 |
+
)
|
1024 |
+
else:
|
1025 |
+
# 4d mask is passed through the layers
|
1026 |
+
if is_causal:
|
1027 |
+
# Causal mask with -3.3895e+38 where no attention should be
|
1028 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1029 |
+
attention_mask,
|
1030 |
+
(batch_size, seq_length),
|
1031 |
+
inputs_embeds,
|
1032 |
+
past_key_values_length,
|
1033 |
+
sliding_window=self.config.sliding_window,
|
1034 |
+
)
|
1035 |
+
else:
|
1036 |
+
# Shape: batch_size, 1, query_length, key_value_length
|
1037 |
+
attention_mask = _prepare_4d_attention_mask(
|
1038 |
+
attention_mask, inputs_embeds.dtype
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
hidden_states = inputs_embeds
|
1042 |
+
|
1043 |
+
# decoder layers
|
1044 |
+
all_hidden_states = () if output_hidden_states else None
|
1045 |
+
all_self_attns = () if output_attentions else None
|
1046 |
+
next_decoder_cache = None
|
1047 |
+
|
1048 |
+
for decoder_layer in self.layers:
|
1049 |
+
if output_hidden_states:
|
1050 |
+
all_hidden_states += (hidden_states,)
|
1051 |
+
|
1052 |
+
if self.gradient_checkpointing and self.training:
|
1053 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1054 |
+
decoder_layer.__call__,
|
1055 |
+
hidden_states,
|
1056 |
+
attention_mask,
|
1057 |
+
position_ids,
|
1058 |
+
past_key_values,
|
1059 |
+
output_attentions,
|
1060 |
+
use_cache,
|
1061 |
+
is_causal,
|
1062 |
+
)
|
1063 |
+
else:
|
1064 |
+
layer_outputs = decoder_layer(
|
1065 |
+
hidden_states,
|
1066 |
+
attention_mask=attention_mask,
|
1067 |
+
position_ids=position_ids,
|
1068 |
+
past_key_value=past_key_values,
|
1069 |
+
output_attentions=output_attentions,
|
1070 |
+
use_cache=use_cache,
|
1071 |
+
is_causal=is_causal,
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
hidden_states = layer_outputs[0]
|
1075 |
+
|
1076 |
+
if use_cache:
|
1077 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1078 |
+
|
1079 |
+
if output_attentions:
|
1080 |
+
all_self_attns += (layer_outputs[1],)
|
1081 |
+
|
1082 |
+
hidden_states = self.norm(hidden_states)
|
1083 |
+
|
1084 |
+
# add hidden states from the last decoder layer
|
1085 |
+
if output_hidden_states:
|
1086 |
+
all_hidden_states += (hidden_states,)
|
1087 |
+
|
1088 |
+
next_cache = None
|
1089 |
+
if use_cache:
|
1090 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1091 |
+
|
1092 |
+
if not return_dict:
|
1093 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1094 |
+
return BaseModelOutputWithPast(
|
1095 |
+
last_hidden_state=hidden_states,
|
1096 |
+
past_key_values=next_cache,
|
1097 |
+
hidden_states=all_hidden_states,
|
1098 |
+
attentions=all_self_attns,
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
|
1102 |
+
class MistralForCausalLM(MistralPreTrainedModel):
|
1103 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1104 |
+
|
1105 |
+
def __init__(self, config):
|
1106 |
+
super().__init__(config)
|
1107 |
+
self.model = MistralModel(config)
|
1108 |
+
self.vocab_size = config.vocab_size
|
1109 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1110 |
+
|
1111 |
+
# Initialize weights and apply final processing
|
1112 |
+
self.post_init()
|
1113 |
+
|
1114 |
+
def get_input_embeddings(self):
|
1115 |
+
return self.model.embed_tokens
|
1116 |
+
|
1117 |
+
def set_input_embeddings(self, value):
|
1118 |
+
self.model.embed_tokens = value
|
1119 |
+
|
1120 |
+
def get_output_embeddings(self):
|
1121 |
+
return self.lm_head
|
1122 |
+
|
1123 |
+
def set_output_embeddings(self, new_embeddings):
|
1124 |
+
self.lm_head = new_embeddings
|
1125 |
+
|
1126 |
+
def set_decoder(self, decoder):
|
1127 |
+
self.model = decoder
|
1128 |
+
|
1129 |
+
def get_decoder(self):
|
1130 |
+
return self.model
|
1131 |
+
|
1132 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1133 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1134 |
+
def forward(
|
1135 |
+
self,
|
1136 |
+
input_ids: torch.LongTensor = None,
|
1137 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1138 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1139 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1140 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1141 |
+
labels: Optional[torch.LongTensor] = None,
|
1142 |
+
use_cache: Optional[bool] = None,
|
1143 |
+
output_attentions: Optional[bool] = None,
|
1144 |
+
output_hidden_states: Optional[bool] = None,
|
1145 |
+
return_dict: Optional[bool] = None,
|
1146 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1147 |
+
r"""
|
1148 |
+
Args:
|
1149 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1150 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1151 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1152 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1153 |
+
|
1154 |
+
Returns:
|
1155 |
+
|
1156 |
+
Example:
|
1157 |
+
|
1158 |
+
```python
|
1159 |
+
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
1160 |
+
|
1161 |
+
>>> model = MistralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1162 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1163 |
+
|
1164 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1165 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1166 |
+
|
1167 |
+
>>> # Generate
|
1168 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1169 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1170 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1171 |
+
```"""
|
1172 |
+
|
1173 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1174 |
+
output_hidden_states = (
|
1175 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1176 |
+
)
|
1177 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1178 |
+
|
1179 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1180 |
+
outputs = self.model(
|
1181 |
+
input_ids=input_ids,
|
1182 |
+
attention_mask=attention_mask,
|
1183 |
+
position_ids=position_ids,
|
1184 |
+
past_key_values=past_key_values,
|
1185 |
+
inputs_embeds=inputs_embeds,
|
1186 |
+
use_cache=use_cache,
|
1187 |
+
output_attentions=output_attentions,
|
1188 |
+
output_hidden_states=output_hidden_states,
|
1189 |
+
return_dict=return_dict,
|
1190 |
+
labels=labels,
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
hidden_states = outputs[0]
|
1194 |
+
logits = self.lm_head(hidden_states)
|
1195 |
+
logits = logits.float()
|
1196 |
+
|
1197 |
+
loss = None
|
1198 |
+
if (labels is not None) and (input_ids.shape[1] > 1):
|
1199 |
+
# Shift so that tokens < n predict n
|
1200 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1201 |
+
shift_labels = labels[..., 1:].contiguous()
|
1202 |
+
# Flatten the tokens
|
1203 |
+
loss_fct = CrossEntropyLoss()
|
1204 |
+
# For deterministic loss w/ gradacc:
|
1205 |
+
#loss_fct = CrossEntropyLoss(reduction="none")
|
1206 |
+
loss_fct = CrossEntropyLoss(reduction="sum")
|
1207 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1208 |
+
shift_labels = shift_labels.view(-1)
|
1209 |
+
# Enable model parallelism
|
1210 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1211 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1212 |
+
# For deterministic loss w/ gradacc:
|
1213 |
+
#loss = loss_fct(shift_logits, shift_labels).sum() / input_ids.shape[0]
|
1214 |
+
# Problem with below is
|
1215 |
+
# e.g. if we have 30 tokens, now we split them in two batches with 20 & 10
|
1216 |
+
# Then we get the losses 60 and 40 and average them
|
1217 |
+
# We get (3 + 4)/2 = 3.5
|
1218 |
+
# Meanwhile if we did it in one we would be doing 100 / 30 = 3.333
|
1219 |
+
loss = loss_fct(shift_logits, shift_labels) / attention_mask.sum()
|
1220 |
+
|
1221 |
+
if not return_dict:
|
1222 |
+
output = (logits,) + outputs[1:]
|
1223 |
+
return (loss,) + output if loss is not None else output
|
1224 |
+
|
1225 |
+
return CausalLMOutputWithPast(
|
1226 |
+
loss=loss,
|
1227 |
+
logits=logits,
|
1228 |
+
past_key_values=outputs.past_key_values,
|
1229 |
+
hidden_states=outputs.hidden_states,
|
1230 |
+
attentions=outputs.attentions,
|
1231 |
+
)
|
1232 |
+
|
1233 |
+
def prepare_inputs_for_generation(
|
1234 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1235 |
+
):
|
1236 |
+
# Omit tokens covered by past_key_values
|
1237 |
+
if past_key_values is not None:
|
1238 |
+
if isinstance(past_key_values, Cache):
|
1239 |
+
cache_length = past_key_values.get_seq_length()
|
1240 |
+
past_length = past_key_values.seen_tokens
|
1241 |
+
max_cache_length = past_key_values.get_max_length()
|
1242 |
+
else:
|
1243 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1244 |
+
max_cache_length = None
|
1245 |
+
|
1246 |
+
# Keep only the unprocessed tokens:
|
1247 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1248 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1249 |
+
# input)
|
1250 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1251 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1252 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1253 |
+
# input_ids based on the past_length.
|
1254 |
+
elif past_length < input_ids.shape[1]:
|
1255 |
+
input_ids = input_ids[:, past_length:]
|
1256 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1257 |
+
|
1258 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1259 |
+
if (
|
1260 |
+
max_cache_length is not None
|
1261 |
+
and attention_mask is not None
|
1262 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1263 |
+
):
|
1264 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1265 |
+
|
1266 |
+
position_ids = kwargs.get("position_ids", None)
|
1267 |
+
if attention_mask is not None and position_ids is None:
|
1268 |
+
# create position_ids on the fly for batch generation
|
1269 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1270 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1271 |
+
if past_key_values:
|
1272 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1273 |
+
|
1274 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1275 |
+
if inputs_embeds is not None and past_key_values is None:
|
1276 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1277 |
+
else:
|
1278 |
+
model_inputs = {"input_ids": input_ids}
|
1279 |
+
|
1280 |
+
model_inputs.update(
|
1281 |
+
{
|
1282 |
+
"position_ids": position_ids,
|
1283 |
+
"past_key_values": past_key_values,
|
1284 |
+
"use_cache": kwargs.get("use_cache"),
|
1285 |
+
"attention_mask": attention_mask,
|
1286 |
+
"labels": kwargs.get("labels"),
|
1287 |
+
}
|
1288 |
+
)
|
1289 |
+
return model_inputs
|
1290 |
+
|
1291 |
+
@staticmethod
|
1292 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1293 |
+
reordered_past = ()
|
1294 |
+
for layer_past in past_key_values:
|
1295 |
+
reordered_past += (
|
1296 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1297 |
+
)
|
1298 |
+
return reordered_past
|
1299 |
+
|
1300 |
+
|
1301 |
+
@add_start_docstrings(
|
1302 |
+
"""
|
1303 |
+
The Mistral Model transformer with a sequence classification head on top (linear layer).
|
1304 |
+
|
1305 |
+
[`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1306 |
+
(e.g. GPT-2) do.
|
1307 |
+
|
1308 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1309 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1310 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1311 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1312 |
+
each row of the batch).
|
1313 |
+
""",
|
1314 |
+
MISTRAL_START_DOCSTRING,
|
1315 |
+
)
|
1316 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
|
1317 |
+
class MistralForSequenceClassification(MistralPreTrainedModel):
|
1318 |
+
def __init__(self, config):
|
1319 |
+
super().__init__(config)
|
1320 |
+
self.num_labels = config.num_labels
|
1321 |
+
self.model = MistralModel(config)
|
1322 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1323 |
+
|
1324 |
+
# Initialize weights and apply final processing
|
1325 |
+
self.post_init()
|
1326 |
+
|
1327 |
+
def get_input_embeddings(self):
|
1328 |
+
return self.model.embed_tokens
|
1329 |
+
|
1330 |
+
def set_input_embeddings(self, value):
|
1331 |
+
self.model.embed_tokens = value
|
1332 |
+
|
1333 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1334 |
+
def forward(
|
1335 |
+
self,
|
1336 |
+
input_ids: torch.LongTensor = None,
|
1337 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1338 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1339 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1340 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1341 |
+
labels: Optional[torch.LongTensor] = None,
|
1342 |
+
use_cache: Optional[bool] = None,
|
1343 |
+
output_attentions: Optional[bool] = None,
|
1344 |
+
output_hidden_states: Optional[bool] = None,
|
1345 |
+
return_dict: Optional[bool] = None,
|
1346 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1347 |
+
r"""
|
1348 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1349 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1350 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1351 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1352 |
+
"""
|
1353 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1354 |
+
|
1355 |
+
transformer_outputs = self.model(
|
1356 |
+
input_ids,
|
1357 |
+
attention_mask=attention_mask,
|
1358 |
+
position_ids=position_ids,
|
1359 |
+
past_key_values=past_key_values,
|
1360 |
+
inputs_embeds=inputs_embeds,
|
1361 |
+
use_cache=use_cache,
|
1362 |
+
output_attentions=output_attentions,
|
1363 |
+
output_hidden_states=output_hidden_states,
|
1364 |
+
return_dict=return_dict,
|
1365 |
+
)
|
1366 |
+
hidden_states = transformer_outputs[0]
|
1367 |
+
logits = self.score(hidden_states)
|
1368 |
+
|
1369 |
+
if input_ids is not None:
|
1370 |
+
batch_size = input_ids.shape[0]
|
1371 |
+
else:
|
1372 |
+
batch_size = inputs_embeds.shape[0]
|
1373 |
+
|
1374 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1375 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1376 |
+
if self.config.pad_token_id is None:
|
1377 |
+
sequence_lengths = -1
|
1378 |
+
else:
|
1379 |
+
if input_ids is not None:
|
1380 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1381 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1382 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1383 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1384 |
+
else:
|
1385 |
+
sequence_lengths = -1
|
1386 |
+
|
1387 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1388 |
+
|
1389 |
+
loss = None
|
1390 |
+
if labels is not None:
|
1391 |
+
labels = labels.to(logits.device)
|
1392 |
+
if self.config.problem_type is None:
|
1393 |
+
if self.num_labels == 1:
|
1394 |
+
self.config.problem_type = "regression"
|
1395 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1396 |
+
self.config.problem_type = "single_label_classification"
|
1397 |
+
else:
|
1398 |
+
self.config.problem_type = "multi_label_classification"
|
1399 |
+
|
1400 |
+
if self.config.problem_type == "regression":
|
1401 |
+
loss_fct = MSELoss()
|
1402 |
+
if self.num_labels == 1:
|
1403 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1404 |
+
else:
|
1405 |
+
loss = loss_fct(pooled_logits, labels)
|
1406 |
+
elif self.config.problem_type == "single_label_classification":
|
1407 |
+
loss_fct = CrossEntropyLoss()
|
1408 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1409 |
+
elif self.config.problem_type == "multi_label_classification":
|
1410 |
+
loss_fct = BCEWithLogitsLoss()
|
1411 |
+
loss = loss_fct(pooled_logits, labels)
|
1412 |
+
if not return_dict:
|
1413 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1414 |
+
return ((loss,) + output) if loss is not None else output
|
1415 |
+
|
1416 |
+
return SequenceClassifierOutputWithPast(
|
1417 |
+
loss=loss,
|
1418 |
+
logits=pooled_logits,
|
1419 |
+
past_key_values=transformer_outputs.past_key_values,
|
1420 |
+
hidden_states=transformer_outputs.hidden_states,
|
1421 |
+
attentions=transformer_outputs.attentions,
|
1422 |
+
)
|
plots.png
ADDED
smash_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"api_key": null,
|
3 |
+
"verify_url": "http://johnrachwan.pythonanywhere.com",
|
4 |
+
"smash_config": {
|
5 |
+
"pruners": "None",
|
6 |
+
"factorizers": "None",
|
7 |
+
"quantizers": "['llm-int8']",
|
8 |
+
"compilers": "None",
|
9 |
+
"task": "text_text_generation",
|
10 |
+
"device": "cuda",
|
11 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsalvkosko",
|
12 |
+
"batch_size": 1,
|
13 |
+
"model_name": "GritLM/GritLM-7B",
|
14 |
+
"pruning_ratio": 0.0,
|
15 |
+
"n_quantization_bits": 4,
|
16 |
+
"output_deviation": 0.005,
|
17 |
+
"max_batch_size": 1,
|
18 |
+
"qtype_weight": "torch.qint8",
|
19 |
+
"qtype_activation": "torch.quint8",
|
20 |
+
"qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
|
21 |
+
"qscheme": "torch.per_tensor_symmetric",
|
22 |
+
"qconfig": "x86",
|
23 |
+
"group_size": 128,
|
24 |
+
"damp_percent": 0.1,
|
25 |
+
"save_load_fn": "bitsandbytes"
|
26 |
+
}
|
27 |
+
}
|