import torch | |
import torch.nn.functional as F | |
class LPLayerNorm(torch.nn.LayerNorm): | |
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None): | |
super().__init__( | |
normalized_shape=normalized_shape, | |
eps=eps, | |
elementwise_affine=elementwise_affine, | |
device=device, | |
dtype=dtype, | |
) | |
def forward(self, x): | |
module_device = x.device | |
downcast_x = _cast_if_autocast_enabled(x) | |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight | |
downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias | |
with torch.autocast(enabled=False, device_type=module_device.type): | |
return F.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps) | |
def _cast_if_autocast_enabled(tensor): | |
if torch.is_autocast_enabled(): | |
if tensor.device.type == 'cuda': | |
dtype = torch.get_autocast_gpu_dtype() | |
elif tensor.device.type == 'cpu': | |
dtype = torch.get_autocast_cpu_dtype() | |
else: | |
raise NotImplementedError() | |
return tensor.to(dtype=dtype) | |
return tensor |