File size: 2,130 Bytes
8011aa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: Summarization_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1392
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Summarization_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5515
- Rouge1: 0.1392
- Rouge2: 0.0503
- Rougel: 0.1161
- Rougelsum: 0.1159
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.8419 | 0.1272 | 0.0393 | 0.108 | 0.1079 | 19.0 |
| No log | 2.0 | 124 | 2.6329 | 0.1333 | 0.0458 | 0.1133 | 0.1131 | 19.0 |
| No log | 3.0 | 186 | 2.5693 | 0.1379 | 0.0494 | 0.1164 | 0.1162 | 19.0 |
| No log | 4.0 | 248 | 2.5515 | 0.1392 | 0.0503 | 0.1161 | 0.1159 | 19.0 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|