{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f978443a340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687600687035477142, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICcB72FWoU/F0aaPLPtir5XBfi9WG7xPAAAAAAAAAAAZj4CvIHitD0gIZY9QK5Zvm78tT1G8Fq9AAAAAAAAAAAAl9E8Rrn6PlZtfTzWAmq+ZeWZOyb4gb0AAAAAAAAAALMRWz0ubRs/eS+GvcGEXL6WCZM7ulCXvQAAAAAAAAAAtvRTvl96lj8wsjC+o0WKvoYWi75RcYA9AAAAAAAAAADNZN88huQXP/pBS70jQYW+m34KPfE9AbwAAAAAAAAAAM0UfTuFIZO73l+4vTe+P77Keey8kj0RPwAAgD8AAAAAAJWzPTZbsD/YJ/I+ka2ZvkxpnD2Wc3g+AAAAAAAAAACanyq82Bq5PS+6OT13qmS+9I4pvJB2NLwAAAAAAAAAAOBhBD75Q+g+lUBmvjHUXL7R4Ka9ZQnOvQAAAAAAAAAAZnaRuxQwj7oqpQQ0M2iorrr/lzoyeJSzAACAPwAAgD8A+gC9eyqOut5oFLRuECcvGbijusqrqzMAAIA/AACAPxoOdr09TBq7gwpxPapFJb4jG9w89NYkvgAAAAAAAIA/ms2mO8U+Uz9qarM8TxaFvmk3ij2j1ay7AAAAAAAAAADme2S9ezTJus2WHjo+hY08U990O67Pdb0AAIA/AACAP1o5vr0WXCw/dRgCPuYLlL5MDJg8UGP3PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCOqJAMUh6MAWyUTTIBjAF0lEdAo7McUO/cnHV9lChoBkdAcWcVp9JBgWgHTT0BaAhHQKOzTYe1a4d1fZQoaAZHQG3yhxYJVsFoB00+AWgIR0Cjs6Ea2nbZdX2UKGgGR0Bvhp95Qgs9aAdNQQFoCEdAo7v6N2ki2XV9lChoBkdAbVRoOhCdBmgHTUMBaAhHQKO9s5NoJzF1fZQoaAZHQHHoz8k2P1doB01hAWgIR0CjveIJ7b+MdX2UKGgGR0BwWaNyYG+saAdNOQFoCEdAo75nxtpEhXV9lChoBkdAbfAUILPUrmgHTVABaAhHQKO+m8vmHQB1fZQoaAZHQG8xXSa3I+5oB00cAWgIR0Cjv0A4OtnxdX2UKGgGR0BuaMsvqTr3aAdNbwFoCEdAo7+NejVQRHV9lChoBkdAcoOKsuFpPGgHTSEBaAhHQKPAN+1Bt1p1fZQoaAZHQG9lr9ETg2toB01JAWgIR0CjwL3+dbxFdX2UKGgGR0Bs0WbRWtEHaAdNHwFoCEdAo8EkOI68x3V9lChoBkdAcj1o/iYLLWgHTSsBaAhHQKPBOOd5IH11fZQoaAZHQG+fRO+IuXhoB01ZAWgIR0CjwUrMLWqcdX2UKGgGR0BxTEfr8iwCaAdNJAFoCEdAo8FgvpQk5nV9lChoBkdAcKXI/Z/Tb2gHTWkBaAhHQKPBZJCjUNN1fZQoaAZHQGxx2ZRbbDdoB004AWgIR0CjwfiJ40MxdX2UKGgGR0BnR9AeJYT1aAdNUgJoCEdAo8KbSofjj3V9lChoBkdAcsVkgwGnoGgHTU4BaAhHQKPCr0nPVut1fZQoaAZHQGslYnfEXLxoB000AWgIR0Cjw+pFkQPJdX2UKGgGR0Bv8P4ZdfLLaAdNTQFoCEdAo8RA4+8oQXV9lChoBkdAbfKcbR4QjGgHTR8BaAhHQKPFHsyi22J1fZQoaAZHQHBoZBTn7pFoB00gAWgIR0Cjxdh0IToMdX2UKGgGR0BwRPrZ8KG+aAdNVgFoCEdAo8YX7cfvF3V9lChoBkdAcFiUYsNDt2gHTX8BaAhHQKPGVAbADaJ1fZQoaAZHQHCq4XGff41oB00UAWgIR0CjxoyMLncMdX2UKGgGR0Bx0VT850bMaAdNGgFoCEdAo8aZMewLVnV9lChoBkdAb6A5d4Vym2gHTUQBaAhHQKPHE5CF9KF1fZQoaAZHQGubr56+nIhoB01CAWgIR0Cjx5CRW912dX2UKGgGR0BwnWTEBKcvaAdNJQFoCEdAo8foJVsDXHV9lChoBkdAcNGgfU4JeGgHTU0BaAhHQKPIAecx0uF1fZQoaAZHQG/8nxJ/XoVoB01TAWgIR0CjyCBzmwJPdX2UKGgGR0BxzmScLBsRaAdN3wFoCEdAo8g7Qw9JSXV9lChoBkdAbXM4OMERrmgHTTMBaAhHQKPJHyTY/V11fZQoaAZHQHEAVY+0PYpoB01OAWgIR0CjyaTgl4TsdX2UKGgGR0Byhc41gpjMaAdNSQFoCEdAo8to2MsH0XV9lChoBkdAcA0l5nlGPWgHTUMBaAhHQKPLsRHww0x1fZQoaAZHQHBDekLx7RhoB00vAWgIR0CjzEHaFmFrdX2UKGgGR0ByPa4EwFkhaAdNGAFoCEdAo82NpM6BAnV9lChoBkdAcmrJjlPrOmgHTRYBaAhHQKPOVW6shgV1fZQoaAZHQHJJp4B3iaRoB006AWgIR0CjzqWac7QtdX2UKGgGR0Bt7lZcLSeAaAdNXwFoCEdAo87XCZWq+HV9lChoBkdAcG7AnDziCWgHTVYBaAhHQKPO3+yZ8a51fZQoaAZHQHFfO5vtMPBoB01OAWgIR0CjzvFlkH2RdX2UKGgGR0BxCtRLsa86aAdNGwFoCEdAo8+Pm5lOGnV9lChoBkdAcBwZ4wAU+WgHTSwBaAhHQKPQIjmCAc11fZQoaAZHQG3XiobXHzZoB01JAWgIR0Cj0Rtt65XmdX2UKGgGR0BwPKapgkTpaAdNUwFoCEdAo9Kz2Dg62nV9lChoBkdAcG1BEKE39GgHTYcBaAhHQKPS7JnQID51fZQoaAZHQHAKNVaOgg5oB02lAWgIR0Cj0vz101ZUdX2UKGgGR0ByO4RpUPxyaAdNUAFoCEdAo9Ma8vmHQHV9lChoBkdAbpo1qnFYMmgHTTMBaAhHQKPcC7/4qPR1fZQoaAZHQG8Z4/eLvThoB000AWgIR0Cj3Ee3x4IKdX2UKGgGR0BxyEW8AaNuaAdNUAFoCEdAo9052jfvW3V9lChoBkdAcf0XQdCE6GgHTRcBaAhHQKPdu4GUwBZ1fZQoaAZHQHGj3kDIRyxoB00lAWgIR0Cj3eTBqKxcdX2UKGgGR0BxErwc5sCUaAdNMgFoCEdAo9343BHkLnV9lChoBkdAapC/KyOaOWgHTS4BaAhHQKPeMd+5OJt1fZQoaAZHQGouEiliz9loB01sAWgIR0Cj3qugg5imdX2UKGgGR0Bwf+qzZ6D5aAdNPQFoCEdAo97zxkNF0HV9lChoBkdAcan2oegctGgHTSkBaAhHQKPe+CwKSgZ1fZQoaAZHQHBBhpg1FYxoB01kAWgIR0Cj3zY9Pk7wdX2UKGgGR0ByNPTjNpudaAdNHgFoCEdAo+BHKdQO4HV9lChoBkdAcN7TqSowVWgHTTABaAhHQKPg3Tzd1uB1fZQoaAZHQHDkpSBK+SNoB008AWgIR0Cj4QjC53C9dX2UKGgGR0BG/Jg9eQdTaAdNBAFoCEdAo+EkPatcOnV9lChoBkdAba+38XN1Q2gHTV0BaAhHQKPh1p3X7Lt1fZQoaAZHQHAwXkLhJiBoB01iAWgIR0Cj4tG9g4OudX2UKGgGR0Bw8BrrPdEcaAdNKQFoCEdAo+OqifxtpHV9lChoBkdAbPuPgeii7GgHTToBaAhHQKPjzwzch1V1fZQoaAZHQHBPYAn2IwdoB01SAWgIR0Cj49Rl6JIldX2UKGgGR0BxgTyc0+C9aAdNIgFoCEdAo+Sh19v0iHV9lChoBkdAbPQ/N7jT8mgHTVMBaAhHQKPk0w6hg3N1fZQoaAZHQG+cqYzBRANoB00cAWgIR0Cj5OGLtNSJdX2UKGgGR0BspjBAOavzaAdNMgFoCEdAo+T+OdXkpHV9lChoBkdAcD6Pwd8zAWgHTXEBaAhHQKPlHFKkEcN1fZQoaAZHQHCl7eZXuE5oB01cAWgIR0Cj5WZd4VyndX2UKGgGR0Bw0RwwTM7maAdNQwFoCEdAo+buLgn+h3V9lChoBkdAbS95sTFl1GgHTScBaAhHQKPnO0a6z3R1fZQoaAZHQG7V0XP7el9oB00MAWgIR0Cj56XuNPxhdX2UKGgGR0BwD17qptJnaAdNRAFoCEdAo+fC5wwTNHV9lChoBkdAbpHK6FuejGgHTTUBaAhHQKPnwqFRHgB1fZQoaAZHQE0xuCwr1/VoB0vpaAhHQKPp1QBPsRh1fZQoaAZHQHFxJC4SYgJoB00vAWgIR0Cj6pC5NGmUdX2UKGgGR0ByI9u+AVfvaAdNWQFoCEdAo+q+Ml1KXnV9lChoBkdAcbhcWTHKfWgHTTsBaAhHQKPrFwAEMb51fZQoaAZHQHBhSXlbNbFoB00TAWgIR0Cj68e4TbnHdX2UKGgGR0BwV7yup0fYaAdNKQFoCEdAo+xBg7YChnV9lChoBkdAbm/1gYxcmmgHTSUBaAhHQKPs6t5D7ZZ1fZQoaAZHQG/S5Gz8gp1oB01HAWgIR0Cj7PAiNbTudX2UKGgGR0Bx8OofjjrBaAdNGQFoCEdAo+8da8pTdnV9lChoBkdAb+lbfxc3VGgHTSoBaAhHQKPwO0F8ohJ1fZQoaAZHQHGiBNmDlHVoB00pAWgIR0Cj8FfYraufdX2UKGgGR0Bl5cniNsFdaAdN6ANoCEdAo/CANLDhtXV9lChoBkdAbmHWzWwu/WgHTe8BaAhHQKPwzUc4o7V1fZQoaAZHQHLNTwQUYbdoB01xAWgIR0Cj8U1vES/TdX2UKGgGR0BvI/vnbItEaAdNWgFoCEdAo/F5iNKh+XV9lChoBkdAb1FWAf+0gWgHTfkBaAhHQKPx6sHSncd1fZQoaAZHQHECBREWqLloB009AWgIR0Cj8pVHnU2DdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}