architecture_config: model: MlpMixer_ext_1 model_params: input_n: 10 joints: 22 output_n: 25 n_txcnn_layers: 4 txc_kernel_size: 3 reduction: 8 hidden_dim: 64 input_gcn: model_complexity: - 64 - 64 - 64 - 64 interpretable: - true - true - true - true - true output_gcn: model_complexity: - 3 interpretable: - true clipping: 15 learning_config: WarmUp: 100 normalize: false dropout: 0.1 weight_decay: 1e-4 epochs: 50 lr: 0.01 # max_norm: 3 scheduler: type: StepLR params: step_size: 3000 gamma: 0.8 loss: weights: "" type: "mpjpe" augmentations: random_scale: x: - 0.95 - 1.05 y: - 0.90 - 1.10 z: - 0.95 - 1.05 random_noise: "" random_flip: x: true y: "" z: true random_rotation: x: - -5 - 5 y: - -180 - 180 z: - -5 - 5 random_translation: x: - -0.10 - 0.10 y: - -0.10 - 0.10 z: - -0.10 - 0.10 environment_config: actions: all evaluate_from: 0 is_norm: true job: 16 sample_rate: 2 return_all_joints: true save_grads: false test_batch: 128 train_batch: 128 general_config: data_dir: /ai-research/datasets/attention/ann_h3.6m/ experiment_name: STSGCN-tests load_model_path: '' log_path: /ai-research/notebooks/testing_repos/logdir/ model_name_rel_path: STSGCN-benchmark save_all_intermediate_models: false save_models: true tensorboard: num_mesh: 4 meta_config: comment: Testing a new architecture based on STSGCN paper. project: Attention task: 3d keypoint prediction version: 0.1.1