File size: 2,150 Bytes
97459cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: bsd-3-clause
tags:
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: long-t5-tglobal-base-mediasum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: multi_news
type: multi_news
config: default
split: train[:20000]
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.3246
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# long-t5-tglobal-base-mediasum
This model is a fine-tuned version of [pszemraj/long-t5-tglobal-base-16384-book-summary](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) on the multi_news dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0387
- Rouge1: 0.3246
- Rouge2: 0.0867
- Rougel: 0.1663
- Rougelsum: 0.1662
- Gen Len: 106.985
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.4191 | 1.0 | 4500 | 2.0952 | 0.3389 | 0.0882 | 0.1706 | 0.1706 | 118.285 |
| 2.3462 | 2.0 | 9000 | 2.0484 | 0.3339 | 0.0887 | 0.1683 | 0.1683 | 111.936 |
| 2.3458 | 3.0 | 13500 | 2.0387 | 0.3246 | 0.0867 | 0.1663 | 0.1662 | 106.985 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|