munish0838 commited on
Commit
e8ef80e
1 Parent(s): 6097757

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +185 -0
README.md ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: deepseek-license
4
+ license_link: LICENSE
5
+ pipeline_tag: text-generation
6
+ base_model: deepseek-ai/DeepSeek-Coder-V2-Lite-Base
7
+ ---
8
+
9
+
10
+ # QuantFactory/DeepSeek-Coder-V2-Lite-Base-GGUF
11
+ This is quantized version of [deepseek-ai/DeepSeek-Coder-V2-Lite-Base](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) created using llama.cpp
12
+
13
+
14
+ # Model Description
15
+ <!-- markdownlint-disable first-line-h1 -->
16
+ <!-- markdownlint-disable html -->
17
+ <!-- markdownlint-disable no-duplicate-header -->
18
+
19
+ <div align="center">
20
+ <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" />
21
+ </div>
22
+
23
+ <p align="center">
24
+ <a href="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/paper.pdf"><b>Paper Link</b>👁️</a>
25
+ </p>
26
+
27
+ # DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
28
+
29
+ ## 1. Introduction
30
+ We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K.
31
+
32
+ <p align="center">
33
+ <img width="100%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/performance.png?raw=true">
34
+ </p>
35
+
36
+
37
+ In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks. The list of supported programming languages can be found [here](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/supported_langs.txt).
38
+
39
+ ## 2. Model Downloads
40
+
41
+ We release the DeepSeek-Coder-V2 with 16B and 236B parameters based on the [DeepSeekMoE](https://arxiv.org/pdf/2401.06066) framework, which has actived parameters of only 2.4B and 21B , including base and instruct models, to the public.
42
+
43
+ <div align="center">
44
+
45
+ | **Model** | **#Total Params** | **#Active Params** | **Context Length** | **Download** |
46
+ | :-----------------------------: | :---------------: | :----------------: | :----------------: | :----------------------------------------------------------: |
47
+ | DeepSeek-Coder-V2-Lite-Base | 16B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) |
48
+ | DeepSeek-Coder-V2-Lite-Instruct | 16B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) |
49
+ | DeepSeek-Coder-V2-Base | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Base) |
50
+ | DeepSeek-Coder-V2-Instruct | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct) |
51
+
52
+ </div>
53
+
54
+
55
+ ## 3. Chat Website
56
+
57
+ You can chat with the DeepSeek-Coder-V2 on DeepSeek's official website: [coder.deepseek.com](https://coder.deepseek.com/sign_in)
58
+
59
+ ## 4. API Platform
60
+ We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/), and you can also pay-as-you-go at an unbeatable price.
61
+
62
+ <p align="center">
63
+ <img width="40%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/model_price.jpg?raw=true">
64
+ </p>
65
+
66
+
67
+ ## 5. How to run locally
68
+ **Here, we provide some examples of how to use DeepSeek-Coder-V2-Lite model. If you want to utilize DeepSeek-Coder-V2 in BF16 format for inference, 80GB*8 GPUs are required.**
69
+
70
+ ### Inference with Huggingface's Transformers
71
+ You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
72
+
73
+ #### Code Completion
74
+ ```python
75
+ from transformers import AutoTokenizer, AutoModelForCausalLM
76
+ import torch
77
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
78
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
79
+ input_text = "#write a quick sort algorithm"
80
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
81
+ outputs = model.generate(**inputs, max_length=128)
82
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
83
+ ```
84
+
85
+ #### Code Insertion
86
+ ```python
87
+ from transformers import AutoTokenizer, AutoModelForCausalLM
88
+ import torch
89
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
90
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
91
+ input_text = """<|fim▁begin|>def quick_sort(arr):
92
+ if len(arr) <= 1:
93
+ return arr
94
+ pivot = arr[0]
95
+ left = []
96
+ right = []
97
+ <|fim▁hole|>
98
+ if arr[i] < pivot:
99
+ left.append(arr[i])
100
+ else:
101
+ right.append(arr[i])
102
+ return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
103
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
104
+ outputs = model.generate(**inputs, max_length=128)
105
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
106
+ ```
107
+
108
+ #### Chat Completion
109
+
110
+ ```python
111
+ from transformers import AutoTokenizer, AutoModelForCausalLM
112
+ import torch
113
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True)
114
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
115
+ messages=[
116
+ { 'role': 'user', 'content': "write a quick sort algorithm in python."}
117
+ ]
118
+ inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
119
+ # tokenizer.eos_token_id is the id of <|EOT|> token
120
+ outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
121
+ print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
122
+ ```
123
+
124
+
125
+
126
+ The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.
127
+
128
+ An example of chat template is as belows:
129
+
130
+ ```bash
131
+ <|begin▁of▁sentence|>User: {user_message_1}
132
+
133
+ Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
134
+
135
+ Assistant:
136
+ ```
137
+
138
+ You can also add an optional system message:
139
+
140
+ ```bash
141
+ <|begin▁of▁sentence|>{system_message}
142
+
143
+ User: {user_message_1}
144
+
145
+ Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
146
+
147
+ Assistant:
148
+ ```
149
+
150
+ ### Inference with vLLM (recommended)
151
+ To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.
152
+
153
+ ```python
154
+ from transformers import AutoTokenizer
155
+ from vllm import LLM, SamplingParams
156
+
157
+ max_model_len, tp_size = 8192, 1
158
+ model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
159
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
160
+ llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
161
+ sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
162
+
163
+ messages_list = [
164
+ [{"role": "user", "content": "Who are you?"}],
165
+ [{"role": "user", "content": "write a quick sort algorithm in python."}],
166
+ [{"role": "user", "content": "Write a piece of quicksort code in C++."}],
167
+ ]
168
+
169
+ prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
170
+
171
+ outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
172
+
173
+ generated_text = [output.outputs[0].text for output in outputs]
174
+ print(generated_text)
175
+ ```
176
+
177
+
178
+
179
+ ## 6. Model License
180
+
181
+ This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-CODE). The use of DeepSeek-Coder-V2 Base/Instruct models is subject to [the Model License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-MODEL). DeepSeek-Coder-V2 series (including Base and Instruct) supports commercial use.
182
+
183
+
184
+ ## 7. Model Contact
185
+ If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).