--- tags: - merge - mergekit - lazymergekit - VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct - mlabonne/ChimeraLlama-3-8B-v3 - MaziyarPanahi/Llama-3-8B-Instruct-v0.4 base_model: - VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct - mlabonne/ChimeraLlama-3-8B-v3 - MaziyarPanahi/Llama-3-8B-Instruct-v0.4 --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/KingNish-Llama3-8b-v0.2-GGUF This is quantized version of [KingNish/KingNish-Llama3-8b-v0.2](https://huggingface.co/KingNish/KingNish-Llama3-8b-v0.2) created using llama.cpp # Original Model Card # KingNish-Llama3-8b-v0.2 KingNish-Llama3-8b-v0.2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct) * [mlabonne/ChimeraLlama-3-8B-v3](https://huggingface.co/mlabonne/ChimeraLlama-3-8B-v3) * [MaziyarPanahi/Llama-3-8B-Instruct-v0.4](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.4) ## 🧩 Configuration ```yaml models: - model: KingNish/KingNish-Llama3-8b # No parameters necessary for base model - model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct parameters: density: 0.7 weight: 0.5 - model: mlabonne/ChimeraLlama-3-8B-v3 parameters: density: 0.65 weight: 0.25 - model: MaziyarPanahi/Llama-3-8B-Instruct-v0.4 parameters: density: 0.55 weight: 0.1 merge_method: dare_ties base_model: KingNish/KingNish-Llama3-8b parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "KingNish/KingNish-Llama3-8b-v0.2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```