Text Generation
GGUF
English
Inference Endpoints
conversational
munish0838 commited on
Commit
770eb14
1 Parent(s): a094f7a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - openbmb/UltraFeedback
5
+ base_model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
+ ---
10
+ Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
11
+
12
+ # Llama-3-Instruct-8B-SPPO-Iter3-GGUF
13
+ This is quantized version of [UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) created using llama.cpp
14
+
15
+
16
+ # Model Description
17
+ This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 3, based on the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.
18
+
19
+
20
+ ## Links to Other Models
21
+ - [Llama-3-Instruct-8B-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1)
22
+ - [Llama-3-Instruct-8B-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2)
23
+ - [Llama-3-Instruct-8B-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3)
24
+
25
+ ### Model Description
26
+
27
+ - Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
28
+ - Language(s) (NLP): Primarily English
29
+ - License: Apache-2.0
30
+ - Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct
31
+
32
+
33
+ ## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)
34
+
35
+
36
+ | Model | LC. Win Rate | Win Rate | Avg. Length |
37
+ |-------------------------------------------|:------------:|:--------:|:-----------:|
38
+ |[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) |31.73 |31.74 | 1962
39
+ |[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) |35.15 |35.98 | 2021
40
+ |[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) |**38.77** |**39.85** | 2066
41
+
42
+
43
+
44
+ ## [Open LLM Leaderboard Evaluation Results](https://github.com/EleutherAI/lm-evaluation-harness)
45
+
46
+ Results are reported by using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) v0.4.1
47
+
48
+ | | arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average |
49
+ |--------|---------------|----------------|------------|-------|-----------|-------|---------|
50
+ |[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) | 63.82 | 54.96 | 76.40 | 75.44 | 79.80 | 65.65 | 69.35
51
+ |[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) | 64.93 | 56.48 | 76.87 | 75.13 | 80.39 | 65.67 | 69.91
52
+ |[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) | 65.19 | 58.04 | 77.11 | 74.91 | 80.86 | 65.60 | **70.29**
53
+
54
+ ### Training hyperparameters
55
+ The following hyperparameters were used during training:
56
+
57
+ - learning_rate: 5e-07
58
+ - eta: 1000
59
+ - per_device_train_batch_size: 8
60
+ - gradient_accumulation_steps: 1
61
+ - seed: 42
62
+ - distributed_type: deepspeed_zero3
63
+ - num_devices: 8
64
+ - optimizer: RMSProp
65
+ - lr_scheduler_type: linear
66
+ - lr_scheduler_warmup_ratio: 0.1
67
+ - num_train_epochs: 6.0 (stop at epoch=1.0)
68
+
69
+
70
+
71
+
72
+ ## Model Citation
73
+ ```
74
+ @misc{wu2024self,
75
+ title={Self-Play Preference Optimization for Language Model Alignment},
76
+ author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
77
+ year={2024},
78
+ eprint={2405.00675},
79
+ archivePrefix={arXiv},
80
+ primaryClass={cs.LG}
81
+ }
82
+ ```