aashish1904
commited on
Commit
•
147b0ff
1
Parent(s):
831c5e9
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
base_model: Qwen/Qwen2.5-0.5B-Instruct
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
license: apache-2.0
|
8 |
+
datasets:
|
9 |
+
- KingNish/reasoning-base-20k
|
10 |
+
tags:
|
11 |
+
- text-generation-inference
|
12 |
+
- transformers
|
13 |
+
- unsloth
|
14 |
+
- qwen2
|
15 |
+
- trl
|
16 |
+
- sft
|
17 |
+
- reasoning
|
18 |
+
|
19 |
+
---
|
20 |
+
|
21 |
+
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
|
22 |
+
|
23 |
+
|
24 |
+
# QuantFactory/Reasoning-0.5b-GGUF
|
25 |
+
This is quantized version of [KingNish/Reasoning-0.5b](https://huggingface.co/KingNish/Reasoning-0.5b) created using llama.cpp
|
26 |
+
|
27 |
+
# Original Model Card
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
# Model Dexcription
|
32 |
+
|
33 |
+
It's First iteration of this model. For testing purpose its just trained on 10k rows.
|
34 |
+
It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1.
|
35 |
+
It do reasoning separately no special tokens or in response reasoning.
|
36 |
+
Below is inference code.
|
37 |
+
```python
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
39 |
+
|
40 |
+
MAX_REASONING_TOKENS = 1024
|
41 |
+
MAX_RESPONSE_TOKENS = 512
|
42 |
+
|
43 |
+
model_name = "KingNish/Reasoning-0.5b"
|
44 |
+
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
+
|
48 |
+
prompt = "Which is greater 9.9 or 9.11 ??"
|
49 |
+
messages = [
|
50 |
+
{"role": "user", "content": prompt}
|
51 |
+
]
|
52 |
+
|
53 |
+
# Generate reasoning
|
54 |
+
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
|
55 |
+
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
|
56 |
+
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
|
57 |
+
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
58 |
+
|
59 |
+
# print("REASONING: " + reasoning_output)
|
60 |
+
|
61 |
+
# Generate answer
|
62 |
+
messages.append({"role": "reasoning", "content": reasoning_output})
|
63 |
+
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
64 |
+
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
|
65 |
+
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
|
66 |
+
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
67 |
+
|
68 |
+
print("ANSWER: " + response_output)
|
69 |
+
```
|
70 |
+
|
71 |
+
- **Trained by:** [Nishith Jain](https://huggingface.co/KingNish)
|
72 |
+
- **License:** apache-2.0
|
73 |
+
- **Finetuned from model :** [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct)
|
74 |
+
- **Dataset used :** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
|
75 |
+
|
76 |
+
|
77 |
+
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
78 |
+
|
79 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|