Transformers
GGUF
English
Inference Endpoints
conversational
aashish1904 commited on
Commit
b56d2db
•
1 Parent(s): 8a0120e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +143 -0
README.md ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: apache-2.0
5
+ language:
6
+ - en
7
+ metrics:
8
+ - accuracy
9
+ base_model:
10
+ - Qwen/Qwen2.5-Math-7B-Instruct
11
+ library_name: transformers
12
+
13
+ ---
14
+
15
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
16
+
17
+
18
+ # QuantFactory/SuperCorrect-7B-GGUF
19
+ This is quantized version of [BitStarWalkin/SuperCorrect-7B](https://huggingface.co/BitStarWalkin/SuperCorrect-7B) created using llama.cpp
20
+
21
+ # Original Model Card
22
+
23
+ ## SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights
24
+
25
+ > [SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights](link)
26
+ > [Ling Yang\*](https://yangling0818.github.io/), [Zhaochen Yu*](https://github.com/BitCodingWalkin), [Tianjun Zhang](https://tianjunz.github.io/), [Minkai Xu](https://minkaixu.com/), [Joseph E. Gonzalez](https://people.eecs.berkeley.edu/~jegonzal/),[Bin Cui](https://cuibinpku.github.io/), [Shuicheng Yan](https://yanshuicheng.info/)
27
+ >
28
+ > Peking University, Skywork AI, UC Berkeley, Stanford University
29
+
30
+ <p align="left">
31
+ <a href='https://arxiv.org/abs/2410.09008'>
32
+ <img src='https://img.shields.io/badge/Arxiv-2410.09008-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a>
33
+ </p>
34
+
35
+ ## Introduction
36
+
37
+ ![image](intro.png)
38
+
39
+ This repo provides the official implementation of **SuperCorrect** a novel two-stage fine-tuning method for improving both reasoning accuracy and self-correction ability for LLMs.
40
+
41
+ Notably, our **SupperCorrect-7B** model significantly surpasses powerful **DeepSeekMath-7B by 7.8%/5.3% and Qwen2.5-Math-7B by 15.1%/6.3% on MATH/GSM8K benchmarks**, achieving new SOTA performance among all 7B models.
42
+
43
+ <div align="left">
44
+ 🚨 Unlike other LLMs, we incorporate LLMs with our pre-defined hierarchical thought template ([Buffer of Thought (BoT)](https://github.com/YangLing0818/buffer-of-thought-llm)) to conduct more deliberate reasoning than conventional CoT. It should be noted that our evaluation methods relies on pure mathematical reasoning abilities of LLMs, instead of leverage other programming methods such as PoT and ToRA.
45
+ </div>
46
+
47
+ ## Examples
48
+
49
+ ![image](example1.png)
50
+
51
+ <div align="left">
52
+ <b>
53
+ 🚨 For more concise and clear presentation, we omit some XML tags.
54
+ </b>
55
+ </div>
56
+
57
+ ### Model details
58
+ *You can check our [Github repo](https://github.com/YangLing0818/SuperCorrect-llm) for more details.*
59
+
60
+ ## Quick Start
61
+
62
+ ### Requirements
63
+
64
+ * Since our current model is based on Qwen2.5-Math series, `transformers>=4.37.0` is needed for Qwen2.5-Math models. The latest version is recommended.
65
+
66
+ > [!Warning]
67
+ >
68
+ > <div align="center">
69
+ > <b>
70
+ > 🚨 This is a must because `transformers` integrated Qwen2 codes since `4.37.0`.
71
+ > </b>
72
+ > </div>
73
+
74
+ ### Inference
75
+
76
+ #### 🤗 Hugging Face Transformers
77
+
78
+ ```python
79
+ from transformers import AutoModelForCausalLM, AutoTokenizer
80
+
81
+ model_name = "BitStarWalkin/SuperCorrect-7B"
82
+ device = "cuda"
83
+
84
+ model = AutoModelForCausalLM.from_pretrained(
85
+ model_name,
86
+ torch_dtype="auto",
87
+ device_map="auto"
88
+ )
89
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
90
+
91
+ prompt = "Find the distance between the foci of the ellipse \[9x^2 + \frac{y^2}{9} = 99.\]"
92
+ hierarchical_prompt = "Solve the following math problem in a step-by-step XML format, each step should be enclosed within tags like <Step1></Step1>. For each step enclosed within the tags, determine if this step is challenging and tricky, if so, add detailed explanation and analysis enclosed within <Key> </Key> in this step, as helpful annotations to help you thinking and remind yourself how to conduct reasoning correctly. After all the reasoning steps, summarize the common solution and reasoning steps to help you and your classmates who are not good at math generalize to similar problems within <Generalized></Generalized>. Finally present the final answer within <Answer> </Answer>."
93
+ # HT
94
+ messages = [
95
+ {"role": "system", "content":hierarchical_prompt },
96
+ {"role": "user", "content": prompt}
97
+ ]
98
+
99
+ text = tokenizer.apply_chat_template(
100
+ messages,
101
+ tokenize=False,
102
+ add_generation_prompt=True
103
+ )
104
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
105
+
106
+ generated_ids = model.generate(
107
+ **model_inputs,
108
+ max_new_tokens=1024
109
+ )
110
+ generated_ids = [
111
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
112
+ ]
113
+
114
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
115
+ print(response)
116
+ ```
117
+
118
+ ## Performance
119
+
120
+ We evaluate our SupperCorrect-7B on two widely used English math benchmarks GSM8K and MATH. All evaluations are tested with our evaluation method which is zero-shot hierarchical thought based prompting.
121
+
122
+ ![image](table.png)
123
+
124
+ ## Citation
125
+
126
+ ```bash
127
+ @article{yang2024supercorrect,
128
+ title={SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights}
129
+ author={Yang, Ling and Yu, Zhaochen and Zhang, Tianjun and Xu, Minkai and Gonzalez, Joseph E and Cui, Bin and Yan, Shuicheng},
130
+ journal={arXiv preprint arXiv:2410.09008},
131
+ year={2024}
132
+ }
133
+ @article{yang2024buffer,
134
+ title={Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models},
135
+ author={Yang, Ling and Yu, Zhaochen and Zhang, Tianjun and Cao, Shiyi and Xu, Minkai and Zhang, Wentao and Gonzalez, Joseph E and Cui, Bin},
136
+ journal={arXiv preprint arXiv:2406.04271},
137
+ year={2024}
138
+ }
139
+ ```
140
+
141
+ ## Acknowledgements
142
+
143
+ Our SuperCorrect is a two-stage fine-tuning model which based on several extraordinary open-source models like [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math), [DeepSeek-Math](https://github.com/deepseek-ai/DeepSeek-Math), [Llama3-Series](https://github.com/meta-llama/llama3). Our evaluation method is based on the code base of outstanding works like [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math) and [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). We also want to express our gratitude for amazing works such as [BoT](https://github.com/YangLing0818/buffer-of-thought-llm) which provides the idea of thought template.