aashish1904 commited on
Commit
cd24305
1 Parent(s): 21f3834

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +111 -0
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: other
5
+ license_name: kohaku-license-1.0
6
+ datasets:
7
+ - laion/conceptual-captions-12m-webdataset
8
+ - CaptionEmporium/coyo-hd-11m-llavanext
9
+ - KBlueLeaf/danbooru2023-metadata-database
10
+ - graph-based-captions/GBC10M
11
+ language:
12
+ - en
13
+ pipeline_tag: text-generation
14
+ library_name: transformers
15
+
16
+ ---
17
+
18
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
19
+
20
+
21
+ # QuantFactory/TIPO-500M-GGUF
22
+ This is quantized version of [KBlueLeaf/TIPO-500M](https://huggingface.co/KBlueLeaf/TIPO-500M) created using llama.cpp
23
+
24
+ # Original Model Card
25
+
26
+ # TIPO: Text to Image with text presampling for Prompt Optimization
27
+
28
+ 500M LLaMA arch model trained for TIPO.<br>
29
+ Tech Report: https://hackmd.io/@KBlueLeaf/BJULOQBR0
30
+
31
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630593e2fca1d8d92b81d2a1/fc9ovmARapQmgq9DZ7ApJ.png)
32
+
33
+ ## Introduction
34
+
35
+ In this project, we introduce "TIPO" (**T**ext to **I**mage with text presampling for **P**rompt **O**ptimization), an innovative framework designed to significantly enhance the quality and usability of Text-to-Image (T2I) generative models. TIPO utilizes the Large Language Models (LLMs) to perform "Text Presampling" within the inference pipeline of text-to-image generative modeling. By refining and extending user input prompts, TIPO enables generative models to produce superior results with minimal user effort, making T2I systems more accessible and effective for a wider range of users.
36
+
37
+ ## Usage
38
+ Use updated version of DTG extension (renamed to z-tipo-extension), current version of z-tipo-extension support stable-diffusion-webui, stable-diffusion-webui-forge and ComfyUI. SD-Next haven't been tested.
39
+ https://github.com/KohakuBlueleaf/z-tipo-extension
40
+
41
+ ## Model arch and Training
42
+ This model is LLaMA arch with 500M parameters, the training data is combined version of Danbooru2023, GBC10M and Coyo-HD-11M.<br>
43
+ The total token seen is around 30B tokens.<br>
44
+ For more information please refer to the tech report and following table.
45
+
46
+ | | TIPO-200M | TIPO-500M |
47
+ | ----------------- | ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------ |
48
+ | Arch | LLaMA | LLaMA |
49
+ | Max ctx length | 1024 | 1024 |
50
+ | Batch Size | 2048 | 3584 |
51
+ | Training dataset | Danbooru, GBC10M, 5epoch<br />Danbooru, GBC10M, Coyo11M, 3epoch | Danbooru, GBC10M, Coyo11M, 5epoch |
52
+ | Real Token Seen* | 40B token | 30B token |
53
+ | Training Hardware | RTX 3090 x 4 | H100 x 8 |
54
+ | Training Time | 420 hour` | 100 hour` |
55
+ | URL | [KBlueLeaf/TIPO-200M · Hugging Face](https://huggingface.co/KBlueLeaf/TIPO-200M) | [KBlueLeaf/TIPO-500M · Hugging Face](https://huggingface.co/KBlueLeaf/TIPO-500M) |
56
+
57
+ *: We only count "non-padding token" in the token seen, since all the training data have very large length range <br/>
58
+ `: Since the training data is pretty short, it cost more time to reach same token seen than general LLM pretraining.<br/>
59
+ As reference, with 4096 as max ctx length and almost all the data have reach that length, you may only need 2days to reach 10B token seen on RTX 3090 x 4 with 200M model.
60
+
61
+ ### Evaluation
62
+ We have tested TIPO in several metric:
63
+
64
+ #### 1. Aesthetic Score (Higher is Better)
65
+
66
+ We compute the Aesthetic Score using the **Aesthetic Predictor V2.5**. This metric is calculated on the short/truncated long test.
67
+
68
+ ![Aesthetic Score Distribution](https://hackmd.io/_uploads/HkJphkSCA.png)
69
+
70
+ *Figure 1: Aesthetic Score distribution.*
71
+
72
+ #### 2. AI Corrupt Score (Higher is Better)
73
+
74
+ The AI Corrupt Score is obtained from the **AICorruptMetrics** in **sdeval**.
75
+
76
+ This metric is calculated on the short/truncated long test.
77
+
78
+ ![AI Corrupt Score Distribution](https://hackmd.io/_uploads/SJlktvE0R.png)
79
+
80
+ *Figure 2: AI Corrupt Score distribution.*
81
+
82
+ #### 3. Frechet Dino Distance (FDD) on Scenery Tag Test
83
+
84
+ We use FDD on the Scenery Tag Test to demonstrate that when input prompts address a smaller distribution, the model struggles to generate images that reflect the true distribution. However, with **TIPO**, this issue is mitigated.
85
+
86
+ | FDD Model | `<meta> scenery` only | `<meta> scenery` + TIPO |
87
+ |------------------|-----------------------|-------------------------|
88
+ | DinoV2 ViT-S | 0.1917 | **0.1786** |
89
+ | DinoV2 ViT-B | 0.2002 | **0.1755** |
90
+ | DinoV2 ViT-L | 0.2017 | **0.1863** |
91
+ | DinoV2 ViT-G | 0.2359 | **0.2096** |
92
+
93
+ *Table 1: Frechet Dino Distance (FDD) on Scenery Tag Test.*
94
+
95
+ ## LICENSE
96
+ This model is released under [Kohaku License 1.0](https://kblueleaf.net/documents/kohaku-license/?[Your%20Organization/Name]=KohakuBlueLeaf&[Year]=2024)<br>
97
+ You can check the above provided URL or check the LICENSE file in this repo.
98
+
99
+ ### Citation
100
+ ```bibtex
101
+ @misc{yeh2024tipo,
102
+ title = {TIPO: Text to Image with text presampling for Prompt Optimization},
103
+ author = {Yeh, Shih-Ying},
104
+ year = {2024},
105
+ month = {9},
106
+ day = {29},
107
+ note = {Technical report available at \url{https://hackmd.io/@KBlueLeaf/BJULOQBR0}.
108
+ Model available at \url{https://huggingface.co/KBlueLeaf/TIPO-500M}.
109
+ Source code available at \url{https://github.com/KohakuBlueleaf/KGen}},
110
+ }
111
+ ```