aashish1904
commited on
Commit
•
c7a6365
1
Parent(s):
fe32723
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
|
5 |
+
license: gemma
|
6 |
+
datasets:
|
7 |
+
- mc4
|
8 |
+
- wikipedia
|
9 |
+
- EleutherAI/pile
|
10 |
+
- oscar-corpus/colossal-oscar-1.0
|
11 |
+
- cc100
|
12 |
+
language:
|
13 |
+
- ja
|
14 |
+
- en
|
15 |
+
tags:
|
16 |
+
- gemma2
|
17 |
+
inference: false
|
18 |
+
base_model: google/gemma-2-2b
|
19 |
+
pipeline_tag: text-generation
|
20 |
+
library_name: transformers
|
21 |
+
|
22 |
+
---
|
23 |
+
|
24 |
+
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
|
25 |
+
|
26 |
+
|
27 |
+
# QuantFactory/gemma-2-baku-2b-GGUF
|
28 |
+
This is quantized version of [rinna/gemma-2-baku-2b](https://huggingface.co/rinna/gemma-2-baku-2b) created using llama.cpp
|
29 |
+
|
30 |
+
# Original Model Card
|
31 |
+
|
32 |
+
|
33 |
+
# `Gemma 2 Baku 2B (rinna/gemma-2-baku-2b)`
|
34 |
+
|
35 |
+
![rinna-icon](./rinna.png)
|
36 |
+
|
37 |
+
# Overview
|
38 |
+
|
39 |
+
We conduct continual pre-training of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on **80B** tokens from a mixture of Japanese and English datasets. The continual pre-training improves the model's performance on Japanese tasks.
|
40 |
+
|
41 |
+
The name `baku` comes from the Japanese word [`獏/ばく/Baku`](https://ja.wikipedia.org/wiki/獏), which is a kind of Japanese mythical creature ([`妖怪/ようかい/Youkai`](https://ja.wikipedia.org/wiki/%E5%A6%96%E6%80%AA)).
|
42 |
+
|
43 |
+
| Size | Continual Pre-Training | Instruction-Tuning |
|
44 |
+
| :- | :- | :- |
|
45 |
+
| 2B | Gemma 2 Baku 2B [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b) | Gemma 2 Baku 2B Instruct [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b-it) |
|
46 |
+
|
47 |
+
* **Library**
|
48 |
+
|
49 |
+
The model was trained using code based on [Lightning-AI/litgpt](https://github.com/Lightning-AI/litgpt).
|
50 |
+
|
51 |
+
* **Model architecture**
|
52 |
+
|
53 |
+
A 26-layer, 2304-hidden-size transformer-based language model. Please refer to the [Gemma 2 Model Card](https://www.kaggle.com/models/google/gemma-2/) for detailed information on the model's architecture.
|
54 |
+
|
55 |
+
* **Training**
|
56 |
+
|
57 |
+
The model was initialized with the [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) model and continually trained on around **80B** tokens from a mixture of the following corpora
|
58 |
+
- [Japanese CC-100](https://huggingface.co/datasets/cc100)
|
59 |
+
- [Japanese C4](https://huggingface.co/datasets/mc4)
|
60 |
+
- [Japanese OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0)
|
61 |
+
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
|
62 |
+
- [Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
|
63 |
+
- rinna curated Japanese dataset
|
64 |
+
|
65 |
+
* **Contributors**
|
66 |
+
- [Toshiaki Wakatsuki](https://huggingface.co/t-w)
|
67 |
+
- [Xinqi Chen](https://huggingface.co/Keely0419)
|
68 |
+
- [Kei Sawada](https://huggingface.co/keisawada)
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
# Benchmarking
|
73 |
+
|
74 |
+
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).
|
75 |
+
|
76 |
+
---
|
77 |
+
|
78 |
+
# How to use the model
|
79 |
+
|
80 |
+
~~~python
|
81 |
+
import transformers
|
82 |
+
import torch
|
83 |
+
|
84 |
+
model_id = "rinna/gemma-2-baku-2b"
|
85 |
+
pipeline = transformers.pipeline(
|
86 |
+
"text-generation",
|
87 |
+
model=model_id,
|
88 |
+
model_kwargs={"torch_dtype": torch.bfloat16, "attn_implementation": "eager"},
|
89 |
+
device_map="auto"
|
90 |
+
)
|
91 |
+
output = pipeline(
|
92 |
+
"西田幾多郎は、",
|
93 |
+
max_new_tokens=256,
|
94 |
+
do_sample=True
|
95 |
+
)
|
96 |
+
print(output[0]["generated_text"])
|
97 |
+
~~~
|
98 |
+
|
99 |
+
It is recommended to use eager attention when conducting batch inference under bfloat16 precision.
|
100 |
+
Currently, Gemma 2 yields NaN values for input sequences with padding when the default attention mechanism (torch.scaled_dot_product_attention) is employed in conjunction with bfloat16.
|
101 |
+
|
102 |
+
---
|
103 |
+
|
104 |
+
# Tokenization
|
105 |
+
The model uses the original [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) tokenizer.
|
106 |
+
|
107 |
+
---
|
108 |
+
|
109 |
+
# How to cite
|
110 |
+
```bibtex
|
111 |
+
@misc{rinna-gemma-2-baku-2b,
|
112 |
+
title = {rinna/gemma-2-baku-2b},
|
113 |
+
author = {Wakatsuki, Toshiaki and Chen, Xinqi and Sawada, Kei},
|
114 |
+
url = {https://huggingface.co/rinna/gemma-2-baku-2b}
|
115 |
+
}
|
116 |
+
|
117 |
+
@inproceedings{sawada2024release,
|
118 |
+
title = {Release of Pre-Trained Models for the {J}apanese Language},
|
119 |
+
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
|
120 |
+
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
|
121 |
+
month = {5},
|
122 |
+
year = {2024},
|
123 |
+
pages = {13898--13905},
|
124 |
+
url = {https://aclanthology.org/2024.lrec-main.1213},
|
125 |
+
note = {\url{https://arxiv.org/abs/2404.01657}}
|
126 |
+
}
|
127 |
+
```
|
128 |
+
---
|
129 |
+
|
130 |
+
# References
|
131 |
+
```bibtex
|
132 |
+
@article{gemma-2-2024,
|
133 |
+
title = {Gemma 2},
|
134 |
+
url = {https://www.kaggle.com/models/google/gemma-2},
|
135 |
+
publisher = {Kaggle},
|
136 |
+
author = {Gemma Team},
|
137 |
+
year = {2024}
|
138 |
+
}
|
139 |
+
|
140 |
+
@misc{litgpt-2023,
|
141 |
+
author = {Lightning AI},
|
142 |
+
title = {LitGPT},
|
143 |
+
howpublished = {\url{https://github.com/Lightning-AI/litgpt}},
|
144 |
+
year = {2023}
|
145 |
+
}
|
146 |
+
```
|
147 |
+
---
|
148 |
+
|
149 |
+
# License
|
150 |
+
[Gemma Terms of Use](https://ai.google.dev/gemma/terms)
|