aashish1904
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
license: other
|
5 |
+
datasets:
|
6 |
+
- georgesung/wizard_vicuna_70k_unfiltered
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
|
11 |
+
|
12 |
+
|
13 |
+
# QuantFactory/llama2_7b_chat_uncensored-GGUF
|
14 |
+
This is quantized version of [georgesung/llama2_7b_chat_uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored) created using llama.cpp
|
15 |
+
|
16 |
+
# Original Model Card
|
17 |
+
|
18 |
+
|
19 |
+
# Overview
|
20 |
+
Fine-tuned [Llama-2 7B](https://huggingface.co/TheBloke/Llama-2-7B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset (originally from [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)).
|
21 |
+
Used QLoRA for fine-tuning. Trained for one epoch on a 24GB GPU (NVIDIA A10G) instance, took ~19 hours to train.
|
22 |
+
|
23 |
+
The version here is the fp16 HuggingFace model.
|
24 |
+
|
25 |
+
## GGML & GPTQ versions
|
26 |
+
Thanks to [TheBloke](https://huggingface.co/TheBloke), he has created the GGML and GPTQ versions:
|
27 |
+
* https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML
|
28 |
+
* https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ
|
29 |
+
|
30 |
+
## Running in Ollama
|
31 |
+
https://ollama.com/library/llama2-uncensored
|
32 |
+
|
33 |
+
# Prompt style
|
34 |
+
The model was trained with the following prompt style:
|
35 |
+
```
|
36 |
+
### HUMAN:
|
37 |
+
Hello
|
38 |
+
|
39 |
+
### RESPONSE:
|
40 |
+
Hi, how are you?
|
41 |
+
|
42 |
+
### HUMAN:
|
43 |
+
I'm fine.
|
44 |
+
|
45 |
+
### RESPONSE:
|
46 |
+
How can I help you?
|
47 |
+
...
|
48 |
+
```
|
49 |
+
|
50 |
+
# Training code
|
51 |
+
Code used to train the model is available [here](https://github.com/georgesung/llm_qlora).
|
52 |
+
|
53 |
+
To reproduce the results:
|
54 |
+
```
|
55 |
+
git clone https://github.com/georgesung/llm_qlora
|
56 |
+
cd llm_qlora
|
57 |
+
pip install -r requirements.txt
|
58 |
+
python train.py configs/llama2_7b_chat_uncensored.yaml
|
59 |
+
```
|
60 |
+
|
61 |
+
# Fine-tuning guide
|
62 |
+
https://georgesung.github.io/ai/qlora-ift/
|
63 |
+
|
64 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
65 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_georgesung__llama2_7b_chat_uncensored)
|
66 |
+
|
67 |
+
| Metric | Value |
|
68 |
+
|-----------------------|---------------------------|
|
69 |
+
| Avg. | 43.39 |
|
70 |
+
| ARC (25-shot) | 53.58 |
|
71 |
+
| HellaSwag (10-shot) | 78.66 |
|
72 |
+
| MMLU (5-shot) | 44.49 |
|
73 |
+
| TruthfulQA (0-shot) | 41.34 |
|
74 |
+
| Winogrande (5-shot) | 74.11 |
|
75 |
+
| GSM8K (5-shot) | 5.84 |
|
76 |
+
| DROP (3-shot) | 5.69 |
|