aashish1904 commited on
Commit
e020f37
·
verified ·
1 Parent(s): 3e409df

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +254 -0
README.md ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: gemma
5
+ library_name: transformers
6
+ pipeline_tag: text-generation
7
+ extra_gated_heading: Access Gemma on Hugging Face
8
+ extra_gated_prompt: >-
9
+ To access Gemma on Hugging Face, you’re required to review and agree to
10
+ Google’s usage license. To do this, please ensure you’re logged in to Hugging
11
+ Face and click below. Requests are processed immediately.
12
+ extra_gated_button_content: Acknowledge license
13
+ tags:
14
+ - conversational
15
+ base_model:
16
+ - google/gemma-2-9b
17
+ language:
18
+ - tr
19
+
20
+ model-index:
21
+ - name: wiroai-turkish-llm-9b
22
+ results:
23
+ - task:
24
+ type: multiple-choice
25
+ dataset:
26
+ type: multiple-choice
27
+ name: MMLU_TR_V0.2
28
+ metrics:
29
+ - name: 5-shot
30
+ type: 5-shot
31
+ value: 0.5982
32
+ verified: false
33
+ - task:
34
+ type: multiple-choice
35
+ dataset:
36
+ type: multiple-choice
37
+ name: Truthful_QA_V0.2
38
+ metrics:
39
+ - name: 0-shot
40
+ type: 0-shot
41
+ value: 0.4991
42
+ verified: false
43
+ - task:
44
+ type: multiple-choice
45
+ dataset:
46
+ type: multiple-choice
47
+ name: ARC_TR_V0.2
48
+ metrics:
49
+ - name: 25-shot
50
+ type: 25-shot
51
+ value: 0.5367
52
+ verified: false
53
+ - task:
54
+ type: multiple-choice
55
+ dataset:
56
+ type: multiple-choice
57
+ name: HellaSwag_TR_V0.2
58
+ metrics:
59
+ - name: 10-shot
60
+ type: 10-shot
61
+ value: 0.5701
62
+ verified: false
63
+ - task:
64
+ type: multiple-choice
65
+ dataset:
66
+ type: multiple-choice
67
+ name: GSM8K_TR_V0.2
68
+ metrics:
69
+ - name: 5-shot
70
+ type: 5-shot
71
+ value: 0.6682
72
+ verified: false
73
+ - task:
74
+ type: multiple-choice
75
+ dataset:
76
+ type: multiple-choice
77
+ name: Winogrande_TR_V0.2
78
+ metrics:
79
+ - name: 5-shot
80
+ type: 5-shot
81
+ value: 0.6058
82
+ verified: false
83
+
84
+ ---
85
+
86
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
87
+
88
+
89
+ # QuantFactory/wiroai-turkish-llm-9b-GGUF
90
+ This is quantized version of [WiroAI/wiroai-turkish-llm-9b](https://huggingface.co/WiroAI/wiroai-turkish-llm-9b) created using llama.cpp
91
+
92
+ # Original Model Card
93
+
94
+
95
+ <div align="center">
96
+ <img src="https://huggingface.co/WiroAI/wiroai-turkish-llm-9b/resolve/main/wiro_logo.png"
97
+ alt="Wiro AI Logo" width="256"/>
98
+ </div>
99
+
100
+
101
+
102
+ # 🚀 Meet with WiroAI/wiroai-turkish-llm-9b! A robust language model with more Turkish language and culture support! 🚀
103
+
104
+ ## 🌟 Key Features
105
+
106
+ - Fine-tuned with 500,000+ high-quality Turkish instructions
107
+ - LoRA method was used for fine-tuning without quantization.
108
+ - Adapted to Turkish culture and local context
109
+ - Built on Google's cutting-edge Gemma architecture
110
+
111
+ 📝 Model Details
112
+ The model is the Turkish-speaking member of Google's innovative Gemma model family. This model has been trained using Supervised Fine-Tuning (SFT) on carefully curated high-quality Turkish instructions. Leveraging the foundations of Gemini technology, this model demonstrates superior performance in Turkish language processing tasks.
113
+
114
+ ## 🔧 Technical Specifications
115
+
116
+ - Architecture: Decoder-only transformer
117
+ - Base Model: Google Gemma 2 9B
118
+ - Training Data: 500,000+ specially selected Turkish instructions
119
+ - Language Support: Turkish (with comprehensive local context understanding) and other common languages.
120
+
121
+ ## 💡 Use Cases
122
+
123
+ - Text Generation and Editing
124
+ - Question Answering
125
+ - Summarization
126
+ - Analysis and Reasoning
127
+ - Content Transformation
128
+ - Turkish Natural Language Processing Tasks
129
+ - Turkish Culture
130
+
131
+
132
+ ## 🚀 Advantages
133
+
134
+ Local Understanding: Ability to comprehend Turkish culture, idioms, and current events
135
+ Resource Efficiency: Effective operation even with limited hardware resources
136
+ Flexible Deployment: Usable on desktop, laptop, or custom cloud infrastructure
137
+ Open Model: Transparent and customizable architecture
138
+
139
+ ## 🌍 About Google Gemma 2
140
+ Gemma is Google's family of lightweight, state-of-the-art open models, developed using the same research and technology used to create the Gemini models. These models are designed to be deployable in environments with limited resources, making AI technology accessible to everyone.
141
+
142
+ ## 📈 Performance and Limitations
143
+ While the model demonstrates high performance in Turkish language tasks, users should consider the following:
144
+
145
+ - Use clear and structured instructions for best results.
146
+ - Verify model outputs for critical applications.
147
+ - Evaluate resource requirements before deployment.
148
+ - Be aware that benchmarks below are represented in certain conditions and results can be replicated. Condition choices are explained below the table.
149
+
150
+ ### Benchmark Scores
151
+
152
+
153
+ | Models | MMLU TR | TruthfulQA TR | ARC TR | HellaSwag TR | GSM8K TR | WinoGrande TR | Average |
154
+ |-----------------------------------------------------------|:-------:|:-------------:|:------:|:------------:|:--------:|:-------------:|:-------:|
155
+ | **WiroAI/wiroai-turkish-llm-9b** | **59.8** | 49.9 | **53.7** | **57.0** | 66.8 | **60.6** | **58.0** |
156
+ | selimc/OrpoGemma-2-9B-TR | 53.0 | 54.3 | 52.4 | 52.0 | 64.8 | 58.9 | 55.9 |
157
+ | Metin/Gemma-2-9b-it-TR-DPO-V1 | 51.3 | 54.7 | 52.6 | 51.2 | 67.1 | 55.2 | 55.4 |
158
+ | CohereForAI/aya-expanse-8b | 52.3 | 52.8 | 49.3 | 56.7 | 61.3 | 59.2 | 55.3 |
159
+ | ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1 | 52.0 | 57.6 | 51.0 | 53.0 | 59.8 | 58.0 | 55.2 |
160
+ | google/gemma-2-9b-it | 51.8 | 53.0 | 52.2 | 51.5 | 63.0 | 56.2 | 54.6 |
161
+ | Eurdem/Defne-llama3.1-8B | 52.9 | 51.2 | 47.1 | 51.6 | 59.9 | 57.5 | 53.4 |
162
+ | **WiroAI/wiroai-turkish-llm-8b** | 52.4 | 49.5 | 50.1 | 54 | 57.5 | 57.0 | 53.4 |
163
+ | meta-llama/Meta-Llama-3-8B-Instruct | 52.2 | 49.2 | 44.2 | 49.2 | 56.0 | 56.7 | 51.3 |
164
+
165
+
166
+ Models Benchmarks are tested with
167
+ ```python
168
+ lm_eval --model_args pretrained=<model_path> --tasks mmlu_tr_v0.2,arc_tr-v0.2,gsm8k_tr-v0.2,hellaswag_tr-v0.2,truthfulqa_v0.2,winogrande_tr-v0.2
169
+ ```
170
+ Please see https://github.com/malhajar17/lm-evaluation-harness_turkish and note that we move forward with default language inference which is the same approach in OpenLLMLeaderboard v2.0
171
+
172
+ ## Usage
173
+
174
+ ### Transformers Pipeline
175
+
176
+ ```python
177
+ import transformers
178
+ import torch
179
+
180
+
181
+ model_id = "WiroAI/wiroai-turkish-llm-9b"
182
+
183
+ pipeline = transformers.pipeline(
184
+ "text-generation",
185
+ model=model_id,
186
+ model_kwargs={"torch_dtype": torch.bfloat16},
187
+ device_map="auto",
188
+ )
189
+
190
+ pipeline.model.eval()
191
+ instruction = "Bana İstanbul ile alakalı bir sosyal medya postu hazırlar mısın?"
192
+
193
+ messages = [
194
+ {"role": "user", "content": f"{instruction}"}
195
+ ]
196
+
197
+ prompt = pipeline.tokenizer.apply_chat_template(
198
+ messages,
199
+ tokenize=False,
200
+ add_generation_prompt=True
201
+ )
202
+
203
+ terminators = [
204
+ pipeline.tokenizer.eos_token_id,
205
+ pipeline.tokenizer.convert_tokens_to_ids("<end_of_turn>")
206
+ ]
207
+
208
+ outputs = pipeline(
209
+ prompt,
210
+ max_new_tokens=512,
211
+ eos_token_id=terminators,
212
+ do_sample=True,
213
+ temperature=0.9,
214
+ )
215
+
216
+ print(outputs[0]["generated_text"][len(prompt):])
217
+ ```
218
+
219
+ ```markdown
220
+ İstanbul'un büyüsüne kapılın! :city_sunset:
221
+ Halk arasında "dünyanın masalı şehri" olarak bilinen İstanbul, her köşesinde tarih, kültür ve modern yaşamın bir araya geldiği eşsiz bir şehir.
222
+ Yüzyıllardır farklı medeniyetlerin izlerini taşıyan İstanbul, tarihi mekanlarından, müzelerinden, çarşılarından ve restoranlarından oluşan zengin kültürel mirasa sahiptir.
223
+ Boğaz'ın eşsiz manzarasında tekne turu yapmak, Topkapı Sarayı'nı ziyaret etmek, Grand Bazaar'da alışveriş yapmak, Mısır Çarşısı'nın canlı atmosferinde kaybolmak, Galata Kulesi'nden muhteşem bir manzara deneyimlemek veya Beyoğlu'nun hareketli sokaklarında yürüyüş yapmak İstanbul'da unutulmaz anılar yaratmak için fırsatlar sunar.
224
+ İstanbul'un büyülü atmosferini kendiniz yaşamak için hemen planınızı yapın! :flag-tr: #İstanbul #Türkiye #Seyahat #Tarih #Kültür #Gezi
225
+ ```
226
+
227
+ ## 🤝 License and Usage
228
+ This model is provided under Google's Gemma license. Please review and accept the license terms before use.
229
+
230
+ ## 📫 Contact and Support
231
+ For questions, suggestions, and feedback, please open an issue on HuggingFace or contact us directly from our website.
232
+
233
+
234
+ ## Citation
235
+
236
+ ```none
237
+ @article{WiroAI,
238
+ title={WiroAI/wiroai-turkish-llm-9b},
239
+ author={Abdullah Bezir, Furkan Burhan Türkay, Cengiz Asmazoğlu},
240
+ year={2024},
241
+ url={https://huggingface.co/WiroAI/wiroai-turkish-llm-9b}
242
+ }
243
+ ```
244
+
245
+ ```none
246
+ @article{gemma_2024,
247
+ title={Gemma},
248
+ url={https://www.kaggle.com/m/3301},
249
+ DOI={10.34740/KAGGLE/M/3301},
250
+ publisher={Kaggle},
251
+ author={Gemma Team},
252
+ year={2024}
253
+ }
254
+ ```