File size: 11,623 Bytes
1b52fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# converter.py

import sys
import torch
import safetensors.torch as st
import logging
import math
import tflite.Model
import tflite.SubGraph
from tflite.TensorType import TensorType

# Set up logging
logger = logging.getLogger(__name__)
logging.basicConfig(
    format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
    level=logging.INFO
)

# Define scale and size mappings
name_of_tensor_type = {
    0: "FLOAT32",
    9: "INT8   ",
    17: "INT4   ",
}

dtype_for_tensor_type = {
    0: torch.float32,
    9: torch.int8,
    17: torch.uint8,  # Because torch.int4 doesn't exist
}

size_for_tensor_type = {
    0: 4,
    9: 1,
    17: 0.5,
}

# Function to update target tensor names
def update_target_name(target_name: str) -> str:
    """Updates the target name to match the tensor name convention."""
    def reverse_replace(theStr: str, a, b):
        return theStr.replace(b, a)
    
    target_name = reverse_replace(target_name, ".weight", ".w")
    target_name = reverse_replace(target_name, 
        "model.layers.", "params.lm.transformer.x_layers_"
    )

    target_name = reverse_replace(target_name, 
        "mlp.gate_proj", "ff_layer.ffn_layer1_gate"
    )
    target_name = reverse_replace(target_name, "mlp.up_proj", "ff_layer.ffn_layer1")
    target_name = reverse_replace(target_name, "mlp.down_proj", "ff_layer.ffn_layer2")

    target_name = reverse_replace(target_name,
        "post_layer_norm.weight", "post_layer_norm.scale"
    )
    target_name = reverse_replace(target_name,
        "post_attention_layernorm", "post_layer_norm"
    )
    
    target_name = reverse_replace(target_name, 
        "pre_layer_norm.weight", "pre_layer_norm.scale"
    )
    target_name = reverse_replace(target_name, "input_layernorm", "pre_layer_norm")
    
    target_name = reverse_replace(target_name, "self_attn.q_proj", "self_attention.q")
    target_name = reverse_replace(target_name, "self_attn.k_proj", "self_attention.k")
    target_name = reverse_replace(target_name, "self_attn.v_proj", "self_attention.v")
    target_name = reverse_replace(target_name, "self_attn.o_proj", "self_attention.post")
    target_name = reverse_replace(target_name, 
        "model.embed_tokens", "params.lm.softmax.logits_ffn"
    )
    target_name = reverse_replace(target_name, "final_ln.weight", "final_ln.scale")
    target_name = reverse_replace(target_name, "model.norm", "params.lm.final_ln")
    
    return target_name

# Optimized dequantization for INT4
def convert_quantized_int4_to_fp(quantized_data, scale_data, dims, dim_scale, dtype):
    zero_point = 8

    # Reshape quantized data to 1D tensor
    quantized_data = quantized_data.view(-1)

    # Extract low and high 4 bits
    low_bits = (quantized_data & 0x0F).type(torch.int8)
    high_bits = (quantized_data >> 4).type(torch.int8)

    # Concatenate low and high bits
    int4_values = torch.stack((low_bits, high_bits), dim=1).view(-1)
    int4_values = int4_values - zero_point  # Adjust zero point

    # Apply scaling
    scaled_data = int4_values.type(dtype) * scale_data

    # Reshape to original dimensions
    scaled_data = scaled_data.view(dims[0], dims[1])

    return scaled_data

# Function to dequantize INT8
def convert_quantized_int8_to_fp(quantized_data, scale_data, dims, dim_scale, dtype):
    zero_point = 0  # Assuming zero_point=0 for int8

    # Reshape quantized data to 1D tensor
    quantized_data = quantized_data.view(-1).type(torch.int8)
    
    # Handle scale_data based on dim_scale
    if dim_scale:
        # Per-column scaling
        scale_data = scale_data.repeat_interleave(2)
    else:
        # Per-row scaling
        scale_data = scale_data.repeat_interleave(2)
    
    # Convert scale_data to the same dtype
    scale_data = scale_data.to(dtype=dtype)

    # Apply scaling
    scaled_data = (quantized_data - zero_point).type(dtype) * scale_data

    # Reshape to original dimensions
    scaled_data = scaled_data.view(dims[0], dims[1])

    return scaled_data

def main():
    # Check command-line arguments
    if len(sys.argv) < 3:
        print("Usage: python converter.py <path_to_tflite_model> <output_safetensors_file> [fp32|fp16|bf16]")
        sys.exit(1)

    tflite_model_path = sys.argv[1]
    output_safetensors_path = sys.argv[2]
    dtype_arg = sys.argv[3] if len(sys.argv) >= 4 else "fp32"

    if dtype_arg == "fp32":
        TARGET_DTYPE = torch.float32
    elif dtype_arg == "fp16":
        TARGET_DTYPE = torch.float16
    elif dtype_arg == "bf16":
        TARGET_DTYPE = torch.bfloat16
    else:
        print("Unsupported dtype. Choose from fp32, fp16, bf16.")
        sys.exit(1)

    logger.info(f"Starting conversion with TARGET_DTYPE={TARGET_DTYPE}")

    # Read the TFLite model
    with open(tflite_model_path, "rb") as input_file:
        buf = bytearray(input_file.read())

    model: tflite.Model.Model = tflite.Model.Model.GetRootAs(buf)
    graph: tflite.SubGraph.SubGraph = model.Subgraphs(0)

    # Initialize dictionaries to hold tensors
    i4_tensors = {}
    i8_tensors = {}
    fp32_tensors = {}
    scale_tensors = {}
    tensor_dims = {}

    # Read and sort tensors
    for i in range(graph.TensorsLength()):
        tensor = graph.Tensors(i)
        tensor_name = tensor.Name().decode("utf-8")
        tensor_type: TensorType = tensor.Type()

        if tensor_name.endswith(".w_quantized_scale"):
            scale_tensors[tensor_name] = tensor
        elif tensor_type == TensorType.INT4:
            i4_tensors[tensor_name] = tensor
        elif tensor_type == TensorType.INT8:
            i8_tensors[tensor_name] = tensor
        elif tensor_type == TensorType.FLOAT32:
            fp32_tensors[tensor_name] = tensor

        tensor_buf_size = tensor.Shape(0)
        tensor_size = tensor_buf_size // size_for_tensor_type[tensor_type]
        
        shape = None
        if (".self_attention.q." in tensor_name
            or ".self_attention.post." in tensor_name) and tensor_size == 4_194_304:
            shape = (2048, 2048)
        elif (".self_attention.k." in tensor_name
              or ".self_attention.v." in tensor_name) and tensor_size == 524_288:
            shape = (256, 2048)
        elif (".ff_layer.ffn_layer1_gate." in tensor_name
              or ".ff_layer.ffn_layer1." in tensor_name) and tensor_size == 25_165_824:
            shape = (12_288, 2048)
        elif ".ff_layer.ffn_layer2." in tensor_name and tensor_size == 25_165_824:
            shape = (2048, 12_288)
        elif "params.lm.softmax.logits_ffn.w" == tensor_name and tensor_size == 524_550_144:
            shape = (256_128, 2048)
        # LayerNorm weights are of shape {1, 1, 2048}
        elif "layer_norm" in tensor_name and tensor_size == 2048:
            shape = (1, 1, 2048)
        else:
            # Default to 1D if shape is unknown
            pass

        tensor_dims[tensor_name] = shape

    # Dictionary to hold dequantized tensors
    tensor_dict = {}

    # Dequantize FP32 tensors
    for tensor_name, tensor in fp32_tensors.items():
        logger.info(f"Saving fp32 {tensor_name}...")
        buffer_meta = model.Buffers(tensor.Buffer())
        dims = tensor_dims.get(tensor_name)

        target_name = update_target_name(tensor_name)

        tensor_data = torch.frombuffer(buffer=buf, 
                                       dtype=torch.float32, 
                                       offset=buffer_meta.Offset(),
                                       count=buffer_meta.Size() // 4)
        
        # Assign reshaped tensor back
        if dims is not None:
            tensor_data = tensor_data.reshape(dims)

        if TARGET_DTYPE != torch.float32:
            tensor_data = tensor_data.to(dtype=TARGET_DTYPE)

        tensor_dict[target_name] = tensor_data

    del fp32_tensors

    # Dequantize INT8 tensors
    for tensor_name, quantized_tensor in i8_tensors.items():
        buffer_meta = model.Buffers(quantized_tensor.Buffer())
        scale_tensor_name = tensor_name + "_quantized_scale"
        scale_buf_meta = model.Buffers(scale_tensors[scale_tensor_name].Buffer())
        dims = tensor_dims.get(tensor_name)

        logger.info(f"Dequantizing int8 {dims} {tensor_name}...")

        target_name = update_target_name(tensor_name)

        quantized_buf = torch.frombuffer(buffer=buf, 
                                         dtype=torch.int8, 
                                         offset=buffer_meta.Offset(),
                                         count=buffer_meta.Size())
        
        scale_buf = torch.frombuffer(buffer=buf,
                                     dtype=torch.float32,
                                     offset=scale_buf_meta.Offset(),
                                     count=scale_buf_meta.Size() // 4)
        
        # MediaPipe TfLiteWeightAccessor::BuildWeightsMapFromTfliteModel sets
        # dim_scale=0, so we do the same.
        tensor_data = convert_quantized_int8_to_fp(
            quantized_data=quantized_buf,
            scale_data=scale_buf,
            dims=dims,
            dim_scale=0,
            dtype=TARGET_DTYPE
        )
        
        tensor_dict[target_name] = tensor_data

        del quantized_buf, scale_buf

    del i8_tensors

    # Dequantize INT4 tensors
    for tensor_name, quantized_tensor in i4_tensors.items():
        buffer_meta = model.Buffers(quantized_tensor.Buffer())
        scale_tensor_name = tensor_name + "_quantized_scale"
        scale_buf_meta = model.Buffers(scale_tensors[scale_tensor_name].Buffer())
        dims = tensor_dims.get(tensor_name)

        logger.info(f"Dequantizing int4 {dims} {tensor_name}...")

        target_name = update_target_name(tensor_name)

        quantized_buf = torch.frombuffer(buffer=buf, 
                                         dtype=torch.uint8, 
                                         offset=buffer_meta.Offset(),
                                         count=buffer_meta.Size())
        
        scale_buf = torch.frombuffer(buffer=buf,
                                     dtype=torch.float32,
                                     offset=scale_buf_meta.Offset(),
                                     count=scale_buf_meta.Size() // 4)
        
        # Special handling for 'logits_ffn.w_quantized_scale'
        if 'logits_ffn.w_quantized_scale' in tensor_name:
            # Assuming two scale factors per row, average them
            if scale_buf.numel() % 2 != 0:
                logger.error(f"Scale data size for {tensor_name} is not even. Cannot average.")
                sys.exit(1)
            scale_data = scale_buf.view(-1, 2).mean(dim=1)  # Average every two scale factors
            # Repeat each scale factor twice to match the two int4 values
            scale_data = scale_data.repeat_interleave(2)
        else:
            # General handling: per-row scaling, repeat each scale factor twice
            scale_data = scale_buf.repeat_interleave(2)
        
        # Convert and reshape quantized_data
        tensor_data = convert_quantized_int4_to_fp(
            quantized_data=quantized_buf,
            scale_data=scale_data,
            dims=dims,
            dim_scale=0,
            dtype=TARGET_DTYPE
        )
        
        tensor_dict[target_name] = tensor_data

        del quantized_buf, scale_buf

    del i4_tensors
    del scale_tensors

    del buf, model, graph

    # Save all tensors to the safetensors file
    logger.info(f"Saving to {output_safetensors_path}...")
    st.save_file(tensor_dict, output_safetensors_path)
    logger.info(f"Success! Saved to {output_safetensors_path}")

if __name__ == "__main__":
    main()