--- base_model: google/gemma-2-2b-it library_name: peft license: gemma metrics: - accuracy - f1 - precision - recall tags: - generated_from_trainer model-index: - name: PaperPrism_gemma2 results: [] --- # PaperPrism_gemma2 This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2055 - Accuracy: 0.7476 - F1: 0.7142 - Precision: 0.7845 - Recall: 0.7476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 0.0300 | 100 | 1.5942 | 0.7248 | 0.7061 | 0.7081 | 0.7248 | | No log | 0.0601 | 200 | 1.6005 | 0.7524 | 0.7241 | 0.7486 | 0.7524 | | No log | 0.0901 | 300 | 1.4531 | 0.7656 | 0.7506 | 0.7555 | 0.7656 | | No log | 0.1202 | 400 | 1.8157 | 0.7332 | 0.7134 | 0.7484 | 0.7332 | | 0.591 | 0.1502 | 500 | 1.4562 | 0.7825 | 0.7753 | 0.7774 | 0.7825 | | 0.591 | 0.1803 | 600 | 1.3786 | 0.7692 | 0.7636 | 0.7816 | 0.7692 | | 0.591 | 0.2103 | 700 | 2.2055 | 0.7476 | 0.7142 | 0.7845 | 0.7476 | ### Framework versions - PEFT 0.13.0 - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0