|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
import math |
|
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.cuda.amp import autocast |
|
|
|
from torch.nn import CrossEntropyLoss |
|
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList |
|
from transformers.generation.logits_process import LogitsProcessorList |
|
if TYPE_CHECKING: |
|
from transformers.generation.streamers import BaseStreamer |
|
from transformers.generation.utils import GenerateOutput |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
try: |
|
from einops import rearrange |
|
except ImportError: |
|
rearrange = None |
|
from torch import nn |
|
|
|
try: |
|
from flash_attn.layers.rotary import apply_rotary_emb_func |
|
from einops import rearrange |
|
|
|
use_flash_rotary = True |
|
print("use flash_attn rotary") |
|
except ImportError: |
|
use_flash_rotary = False |
|
print("import flash_attn rotary fail") |
|
|
|
try: |
|
from flash_attn.ops.rms_norm import rms_norm |
|
|
|
print("use flash_attn rms_norm") |
|
except ImportError: |
|
rms_norm = None |
|
print("import flash_attn rms_norm fail") |
|
|
|
from .configuration_qwen import QWenConfig |
|
from .qwen_generation_utils import ( |
|
HistoryType, |
|
make_context, |
|
decode_tokens, |
|
get_stop_words_ids, |
|
StopWordsLogitsProcessor, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "qwen" |
|
_CONFIG_FOR_DOC = "QWenConfig" |
|
|
|
QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"] |
|
|
|
try: |
|
from flash_attn.flash_attn_interface import flash_attn_unpadded_func |
|
except ImportError: |
|
flash_attn_unpadded_func = None |
|
|
|
|
|
class FlashSelfAttention(torch.nn.Module): |
|
def __init__( |
|
self, |
|
causal=False, |
|
softmax_scale=None, |
|
attention_dropout=0.0, |
|
): |
|
super().__init__() |
|
assert flash_attn_unpadded_func is not None, ( |
|
"Please install FlashAttention first, " "e.g., with pip install flash-attn" |
|
) |
|
assert ( |
|
rearrange is not None |
|
), "Please install einops first, e.g., with pip install einops" |
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.dropout_p = attention_dropout |
|
|
|
def forward(self, q, k, v): |
|
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v))) |
|
assert all((i.is_cuda for i in (q, k, v))) |
|
batch_size, seqlen_q = q.shape[0], q.shape[1] |
|
seqlen_k = k.shape[1] |
|
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]] |
|
cu_seqlens_q = torch.arange( |
|
0, |
|
(batch_size + 1) * seqlen_q, |
|
step=seqlen_q, |
|
dtype=torch.int32, |
|
device=q.device, |
|
) |
|
|
|
if self.training: |
|
assert seqlen_k == seqlen_q |
|
|
|
is_causal = self.causal |
|
cu_seqlens_k = cu_seqlens_q |
|
else: |
|
is_causal = seqlen_q == seqlen_k |
|
cu_seqlens_k = torch.arange( |
|
0, |
|
(batch_size + 1) * seqlen_k, |
|
step=seqlen_k, |
|
dtype=torch.int32, |
|
device=q.device, |
|
) |
|
self.dropout_p = 0 |
|
output = flash_attn_unpadded_func( |
|
q, |
|
k, |
|
v, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
seqlen_q, |
|
seqlen_k, |
|
self.dropout_p, |
|
softmax_scale=self.softmax_scale, |
|
causal=is_causal, |
|
) |
|
|
|
output = rearrange(output, "(b s) ... -> b s ...", b=batch_size) |
|
return output |
|
|
|
|
|
class QWenAttention(nn.Module): |
|
def __init__(self, config, layer_number=None): |
|
super().__init__() |
|
|
|
max_positions = config.max_position_embeddings |
|
self.register_buffer( |
|
"bias", |
|
torch.tril( |
|
torch.ones((max_positions, max_positions), dtype=torch.bool) |
|
).view(1, 1, max_positions, max_positions), |
|
persistent=False, |
|
) |
|
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False) |
|
self.layer_number = max(1, layer_number) |
|
self.params_dtype = config.params_dtype |
|
self.seq_length = config.seq_length |
|
|
|
self.hidden_size = config.hidden_size |
|
self.split_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
|
self.use_flash_attn = config.use_flash_attn |
|
self.scale_attn_weights = True |
|
|
|
self.layer_idx = None |
|
|
|
self.projection_size = config.kv_channels * config.num_attention_heads |
|
|
|
assert self.projection_size % config.num_attention_heads == 0 |
|
self.hidden_size_per_attention_head = ( |
|
self.projection_size // config.num_attention_heads |
|
) |
|
|
|
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size) |
|
|
|
self.c_proj = nn.Linear( |
|
config.hidden_size, self.projection_size, bias=not config.no_bias |
|
) |
|
|
|
if self.use_flash_attn: |
|
self.core_attention_flash = FlashSelfAttention( |
|
causal=True, attention_dropout=config.attn_pdrop |
|
) |
|
|
|
self.bf16 = config.bf16 |
|
|
|
if config.rotary_pct == 1.0: |
|
self.rotary_ndims = None |
|
else: |
|
assert config.rotary_pct < 1 |
|
self.rotary_ndims = int( |
|
self.hidden_size_per_attention_head * config.rotary_pct |
|
) |
|
dim = ( |
|
self.rotary_ndims |
|
if self.rotary_ndims is not None |
|
else self.hidden_size_per_attention_head |
|
) |
|
self.rotary_emb = RotaryEmbedding( |
|
dim, base=config.rotary_emb_base |
|
) |
|
|
|
self.use_dynamic_ntk = config.use_dynamic_ntk |
|
self.use_logn_attn = config.use_logn_attn |
|
|
|
logn_list = [math.log(i, self.seq_length) if i > self.seq_length else 1 for i in range(1, 32768)] |
|
self.logn_tensor = torch.Tensor(logn_list)[None, :, None, None] |
|
self._ntk_cached = 1.0 |
|
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop) |
|
|
|
def _attn(self, query, key, value, attention_mask=None, head_mask=None): |
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) |
|
|
|
if self.scale_attn_weights: |
|
attn_weights = attn_weights / torch.full( |
|
[], |
|
value.size(-1) ** 0.5, |
|
dtype=attn_weights.dtype, |
|
device=attn_weights.device, |
|
) |
|
|
|
query_length, key_length = query.size(-2), key.size(-2) |
|
causal_mask = self.bias[ |
|
:, :, key_length - query_length : key_length, :key_length |
|
] |
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to( |
|
attn_weights.device |
|
) |
|
attn_weights = torch.where( |
|
causal_mask, attn_weights.to(attn_weights.dtype), mask_value |
|
) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
attn_weights = attn_weights.type(value.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
return attn_output, attn_weights |
|
|
|
def _upcast_and_reordered_attn( |
|
self, query, key, value, attention_mask=None, head_mask=None |
|
): |
|
bsz, num_heads, q_seq_len, dk = query.size() |
|
_, _, k_seq_len, _ = key.size() |
|
|
|
attn_weights = torch.empty( |
|
bsz * num_heads, |
|
q_seq_len, |
|
k_seq_len, |
|
dtype=torch.float32, |
|
device=query.device, |
|
) |
|
|
|
scale_factor = 1.0 |
|
if self.scale_attn_weights: |
|
scale_factor /= float(value.size(-1)) ** 0.5 |
|
|
|
with autocast(enabled=False): |
|
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape( |
|
-1, dk, k_seq_len |
|
) |
|
attn_weights = torch.baddbmm( |
|
attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor |
|
) |
|
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) |
|
|
|
query_length, key_length = query.size(-2), key.size(-2) |
|
causal_mask = self.bias[ |
|
:, :, key_length - query_length : key_length, :key_length |
|
] |
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to( |
|
attn_weights.device |
|
) |
|
attn_weights = torch.where(causal_mask, attn_weights, mask_value) |
|
|
|
if attention_mask is not None: |
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if attn_weights.dtype != torch.float32: |
|
raise RuntimeError( |
|
"Error with upcasting, attn_weights does not have dtype torch.float32" |
|
) |
|
attn_weights = attn_weights.type(value.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
|
|
return attn_output, attn_weights |
|
|
|
def _split_heads(self, tensor, num_heads, attn_head_size): |
|
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) |
|
tensor = tensor.view(new_shape) |
|
return tensor |
|
|
|
def _merge_heads(self, tensor, num_heads, attn_head_size): |
|
tensor = tensor.contiguous() |
|
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) |
|
return tensor.view(new_shape) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[Tuple[torch.FloatTensor]], |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
): |
|
|
|
mixed_x_layer = self.c_attn(hidden_states) |
|
query, key, value = mixed_x_layer.split(self.split_size, dim=2) |
|
|
|
query = self._split_heads(query, self.num_heads, self.head_dim) |
|
key = self._split_heads(key, self.num_heads, self.head_dim) |
|
value = self._split_heads(value, self.num_heads, self.head_dim) |
|
|
|
kv_seq_len = hidden_states.size()[1] |
|
if layer_past: |
|
|
|
kv_seq_len += layer_past[0].shape[1] |
|
if self.use_dynamic_ntk and kv_seq_len == hidden_states.size()[1]: |
|
context_value = math.log(kv_seq_len / self.seq_length, 2) + 1 |
|
ntk_alpha = 2 ** math.ceil(context_value) - 1 |
|
ntk_alpha = max(ntk_alpha, 1) |
|
self._ntk_cached = ntk_alpha |
|
else: |
|
ntk_alpha = self._ntk_cached |
|
rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha).to(hidden_states.device) |
|
|
|
if rotary_pos_emb is not None: |
|
if isinstance(rotary_pos_emb, tuple): |
|
rotary_pos_emb = rotary_pos_emb |
|
else: |
|
rotary_pos_emb = (rotary_pos_emb,) * 2 |
|
|
|
if rotary_pos_emb is not None: |
|
q_pos_emb, k_pos_emb = rotary_pos_emb |
|
|
|
cur_len = query.shape[1] |
|
q_pos_emb = q_pos_emb[:, -cur_len:, :, :] |
|
k_pos_emb = k_pos_emb[:, -cur_len:, :, :] |
|
query = apply_rotary_pos_emb(query, q_pos_emb) |
|
key = apply_rotary_pos_emb(key, k_pos_emb) |
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past[0], layer_past[1] |
|
key = torch.cat((past_key, key), dim=1) |
|
value = torch.cat((past_value, value), dim=1) |
|
|
|
if use_cache: |
|
present = (key, value) |
|
else: |
|
present = None |
|
|
|
if self.use_logn_attn: |
|
if self.logn_tensor.device != query.device: |
|
self.logn_tensor = self.logn_tensor.to(query.device).type_as(query) |
|
seq_start = key.size(0) - query.size(0) |
|
seq_end = key.size(0) |
|
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :] |
|
query = query * logn_tensor.expand_as(query) |
|
|
|
if self.use_flash_attn: |
|
q, k, v = query, key, value |
|
context_layer = self.core_attention_flash(q, k, v) |
|
|
|
context_layer = rearrange( |
|
context_layer, "b s h d -> b s (h d)" |
|
).contiguous() |
|
else: |
|
query = query.permute(0, 2, 1, 3) |
|
key = key.permute(0, 2, 1, 3) |
|
value = value.permute(0, 2, 1, 3) |
|
attn_output, attn_weight = self._attn( |
|
query, key, value, attention_mask, head_mask |
|
) |
|
context_layer = self._merge_heads( |
|
attn_output, self.num_heads, self.head_dim |
|
) |
|
|
|
attn_output = self.c_proj(context_layer) |
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
if self.use_flash_attn: |
|
raise ValueError("Cannot output attentions while using flash-attn") |
|
else: |
|
outputs += (attn_weight,) |
|
|
|
return outputs |
|
|
|
|
|
class QWenMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.w1 = nn.Linear( |
|
config.hidden_size, config.ffn_hidden_size // 2, bias=not config.no_bias |
|
) |
|
self.w2 = nn.Linear( |
|
config.hidden_size, config.ffn_hidden_size // 2, bias=not config.no_bias |
|
) |
|
ff_dim_in = config.ffn_hidden_size // 2 |
|
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias) |
|
|
|
def forward(self, hidden_states): |
|
a1 = self.w1(hidden_states) |
|
a2 = self.w2(hidden_states) |
|
intermediate_parallel = a1 * F.silu(a2) |
|
output = self.c_proj(intermediate_parallel) |
|
return output |
|
|
|
|
|
class QWenBlock(nn.Module): |
|
def __init__(self, config, layer_idx=None, num_expert=1): |
|
super().__init__() |
|
self.num_expert = num_expert |
|
self.layer_number = layer_idx |
|
self.apply_residual_connection_post_layernorm = ( |
|
config.apply_residual_connection_post_layernorm |
|
) |
|
hidden_size = config.hidden_size |
|
self.apply_residual_connection_post_layernorm = ( |
|
config.apply_residual_connection_post_layernorm |
|
) |
|
self.bf16 = config.bf16 |
|
|
|
self.ln_1 = RMSNorm( |
|
hidden_size, |
|
eps=config.layer_norm_epsilon, |
|
) |
|
self.attn = QWenAttention(config, layer_number=layer_idx) |
|
self.ln_2 = RMSNorm( |
|
hidden_size, |
|
eps=config.layer_norm_epsilon, |
|
) |
|
|
|
self.mlp = QWenMLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[Tuple[torch.FloatTensor]], |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
): |
|
layernorm_output = self.ln_1(hidden_states) |
|
|
|
attn_outputs = self.attn( |
|
layernorm_output, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attn_outputs[0] |
|
|
|
outputs = attn_outputs[1:] |
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = hidden_states |
|
layernorm_input = attn_output + residual |
|
|
|
layernorm_output = self.ln_2(layernorm_input) |
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = layernorm_input |
|
|
|
mlp_output = self.mlp(layernorm_output) |
|
hidden_states = residual + mlp_output |
|
|
|
if use_cache: |
|
outputs = (hidden_states,) + outputs |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class QWenPreTrainedModel(PreTrainedModel): |
|
config_class = QWenConfig |
|
base_model_prefix = "transformer" |
|
is_parallelizable = False |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["QWenBlock"] |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, RMSNorm): |
|
module.weight.data.fill_(1.0) |
|
|
|
for name, p in module.named_parameters(): |
|
if name == "c_proj.weight": |
|
p.data.normal_( |
|
mean=0.0, |
|
std=( |
|
self.config.initializer_range |
|
/ math.sqrt(2 * self.config.n_layer) |
|
), |
|
) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, QWenModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class QWenModel(QWenPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = ["attn.masked_bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.vocab_size = config.padded_vocab_size |
|
self.num_hidden_layers = config.num_hidden_layers |
|
self.embed_dim = config.hidden_size |
|
|
|
max_sequence_length = config.max_position_embeddings |
|
self.position_embedding_type = config.pos_emb |
|
self.gradient_checkpointing = False |
|
|
|
if self.position_embedding_type == "learned": |
|
self.wpe = nn.Embedding(max_sequence_length, self.embed_dim) |
|
self.init_method(self.position_embeddings.weight) |
|
self._position_embeddings_key = "position_embeddings" |
|
self.init_method(self.position_embeddings.weight) |
|
else: |
|
self.wpe = None |
|
self._position_embeddings_key = "" |
|
|
|
self.wte = nn.Embedding(self.vocab_size, self.embed_dim) |
|
|
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
self.h = nn.ModuleList( |
|
[ |
|
QWenBlock( |
|
config, |
|
layer_idx=i, |
|
) |
|
for i in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.ln_f = RMSNorm( |
|
self.embed_dim, |
|
eps=config.layer_norm_epsilon, |
|
) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.wte = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
batch_size = input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size = inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
if attention_mask is not None: |
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
attention_mask = attention_mask[:, None, None, :] |
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
|
|
encoder_attention_mask = None |
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
hidden_states = inputs_embeds |
|
if self.wpe is not None: |
|
position_embeds = self.wpe(position_ids) |
|
hidden_states = hidden_states + position_embeds |
|
|
|
hidden_states = self.drop(hidden_states) |
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache, output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
None, |
|
attention_mask, |
|
head_mask[i], |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask[i], |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[1],) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
hidden_states = hidden_states.view(output_shape) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v for v in [hidden_states, presents, all_hidden_states] if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class QWenLMHeadModel(QWenPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"] |
|
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = QWenModel(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs |
|
): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
if past_key_values: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
) |
|
return model_inputs |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(lm_logits.device) |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor |
|
) -> Tuple[Tuple[torch.Tensor]]: |
|
|
|
return tuple( |
|
tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past |
|
) |
|
for layer_past in past_key_values |
|
) |
|
|
|
def chat( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
query: str, |
|
history: Optional[HistoryType], |
|
system: str = "You are a helpful assistant.", |
|
append_history: bool = True, |
|
) -> Tuple[str, HistoryType]: |
|
|
|
if history is None: |
|
history = [] |
|
|
|
raw_text, context_tokens = make_context( |
|
tokenizer, |
|
query, |
|
history=history, |
|
system=system, |
|
max_window_size=6144, |
|
chat_format=self.generation_config.chat_format, |
|
) |
|
|
|
stop_words_ids = get_stop_words_ids( |
|
self.generation_config.chat_format, tokenizer |
|
) |
|
input_ids = torch.tensor([context_tokens]).to(self.device) |
|
|
|
outputs = self.generate( |
|
input_ids, |
|
stop_words_ids=stop_words_ids, |
|
return_dict_in_generate=False, |
|
) |
|
|
|
response = decode_tokens( |
|
outputs[0], |
|
tokenizer, |
|
raw_text_len=len(raw_text), |
|
context_length=len(context_tokens), |
|
chat_format=self.generation_config.chat_format, |
|
verbose=False, |
|
) |
|
|
|
if append_history: |
|
history.append((query, response)) |
|
|
|
return response, history |
|
|
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, |
|
synced_gpus: Optional[bool] = None, |
|
streamer: Optional["BaseStreamer"] = None, |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
|
|
stop_words_ids = kwargs.pop('stop_words_ids', None) |
|
if stop_words_ids is None and generation_config is not None: |
|
stop_words_ids = getattr(generation_config, 'stop_words_ids', None) |
|
if stop_words_ids is None: |
|
stop_words_ids = getattr(self.generation_config, 'stop_words_ids', None) |
|
|
|
if stop_words_ids is not None: |
|
stop_words_logits_processor = StopWordsLogitsProcessor( |
|
stop_words_ids=stop_words_ids, eos_token_id=self.generation_config.eos_token_id) |
|
if logits_processor is None: |
|
logits_processor = LogitsProcessorList([stop_words_logits_processor]) |
|
else: |
|
logits_processor.append(stop_words_logits_processor) |
|
|
|
return super().generate( |
|
inputs, |
|
generation_config, |
|
logits_processor, |
|
stopping_criteria, |
|
prefix_allowed_tokens_fn, |
|
synced_gpus, |
|
streamer, |
|
**kwargs, |
|
) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, base=10000): |
|
super().__init__() |
|
self.dim = dim |
|
self.base = base |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
if importlib.util.find_spec("einops") is None: |
|
raise RuntimeError("einops is required for Rotary Embedding") |
|
|
|
self._rotary_pos_emb_cache = None |
|
self._seq_len_cached = 0 |
|
self._ntk_alpha_cached = 1.0 |
|
|
|
def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0): |
|
seqlen = max_seq_len + offset |
|
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached: |
|
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2)) |
|
self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=self.inv_freq.device).float() / self.dim)) |
|
self._seq_len_cached = seqlen |
|
self._ntk_alpha_cached = ntk_alpha |
|
seq = torch.arange(seqlen, device=self.inv_freq.device) |
|
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
from einops import rearrange |
|
|
|
self._rotary_pos_emb_cache = rearrange(emb, "n d -> 1 n 1 d") |
|
|
|
def forward(self, max_seq_len, offset=0, ntk_alpha=1.0): |
|
self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha) |
|
return self._rotary_pos_emb_cache[:, offset : offset + max_seq_len] |
|
|
|
|
|
def _rotate_half(x): |
|
from einops import rearrange |
|
|
|
x = rearrange(x, "... (j d) -> ... j d", j=2) |
|
x1, x2 = x.unbind(dim=-2) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(t, freqs, use_flash_rotary=False): |
|
if use_flash_rotary: |
|
t_ = t.float() |
|
freqs = freqs.squeeze(0).squeeze(1) |
|
cos = freqs[:, : freqs.shape[-1] // 2].cos() |
|
sin = freqs[:, : freqs.shape[-1] // 2].sin() |
|
output = apply_rotary_emb_func(t_, cos, sin).type_as(t) |
|
return output |
|
else: |
|
rot_dim = freqs.shape[-1] |
|
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:] |
|
t_ = t_.float() |
|
t_pass_ = t_pass_.float() |
|
t_ = (t_ * freqs.cos()) + (_rotate_half(t_) * freqs.sin()) |
|
return torch.cat((t_, t_pass_), dim=-1).type_as(t) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
if rms_norm is not None: |
|
return rms_norm(x, self.weight, self.eps) |
|
else: |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|