# Copyright (c) Alibaba Cloud. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Generation support.""" from typing import Tuple, List, Union, Iterable, Dict import numpy as np import torch import torch.nn.functional as F from transformers import PreTrainedTokenizer from transformers import logging from transformers.generation import LogitsProcessor logger = logging.get_logger(__name__) # Types. HistoryType = List[Tuple[str, str]] TokensType = List[int] BatchTokensType = List[List[int]] def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType: for tokens in batch: context_length = len(tokens) if context_length < seq_length: tokens.extend([pad_id] * (seq_length - context_length)) return batch def get_ltor_masks_and_position_ids( data, eod_token, reset_position_ids, reset_attention_mask, eod_mask_loss, ): """Build masks and position id for left to right model.""" # Extract batch size and sequence length. micro_batch_size, seq_length = data.size() # Attention mask (lower triangular). if reset_attention_mask: att_mask_batch = micro_batch_size else: att_mask_batch = 1 attention_mask = torch.tril( torch.ones((att_mask_batch, seq_length, seq_length), device=data.device) ).view(att_mask_batch, 1, seq_length, seq_length) # Loss mask. loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device) if eod_mask_loss: loss_mask[data == eod_token] = 0.0 # Position ids. position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device) position_ids = position_ids.unsqueeze(0).expand_as(data) # We need to clone as the ids will be modifed based on batch index. if reset_position_ids: position_ids = position_ids.clone() if reset_position_ids or reset_attention_mask: # Loop through the batches: for b in range(micro_batch_size): # Find indecies where EOD token is. eod_index = position_ids[b, data[b] == eod_token] # Detach indecies from positions if going to modify positions. if reset_position_ids: eod_index = eod_index.clone() # Loop through EOD indecies: prev_index = 0 for j in range(eod_index.size()[0]): i = eod_index[j] # Mask attention loss. if reset_attention_mask: attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0 # Reset positions. if reset_position_ids: position_ids[b, (i + 1) :] -= i + 1 - prev_index prev_index = i + 1 # Convert attention mask to binary: attention_mask = attention_mask < 0.5 return attention_mask, loss_mask, position_ids def get_batch(context_tokens: torch.LongTensor, eod_id: int): """Generate batch from context tokens.""" # Move to GPU. tokens = context_tokens.contiguous().to(context_tokens.device) # Get the attention mask and postition ids. attention_mask, _, position_ids = get_ltor_masks_and_position_ids( tokens, eod_id, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, ) return tokens, attention_mask, position_ids def get_stop_words_ids(chat_format, tokenizer): if chat_format == "raw": stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]] elif chat_format == "chatml": stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]] else: raise NotImplementedError(f"Unknown chat format {chat_format!r}") return stop_words_ids def make_context( tokenizer: PreTrainedTokenizer, query: str, history: List[Tuple[str, str]] = None, system: str = "", max_window_size: int = 6144, chat_format: str = "chatml", ): audio_info = None if history is None: history = [] if chat_format == "chatml": im_start, im_end = "<|im_start|>", "<|im_end|>" im_start_tokens = [tokenizer.im_start_id] im_end_tokens = [tokenizer.im_end_id] nl_tokens = tokenizer.encode("\n") def _tokenize_str(role, content): # import ipdb; ipdb.set_trace() audio_info = tokenizer.process_audio(content) return f"{role}\n{content}", tokenizer.encode( role, allowed_special=set(tokenizer.AUDIO_ST), audio_info=audio_info ) + nl_tokens + tokenizer.encode(content, allowed_special=set(tokenizer.AUDIO_ST), audio_info=audio_info),audio_info system_text, system_tokens_part, audio_info = _tokenize_str("system", system) system_tokens = im_start_tokens + system_tokens_part + im_end_tokens raw_text = "" context_tokens = [] for turn_query, turn_response in reversed(history): query_text, query_tokens_part, _ = _tokenize_str("user", turn_query) query_tokens = im_start_tokens + query_tokens_part + im_end_tokens if turn_response is not None: response_text, response_tokens_part, _ = _tokenize_str( "assistant", turn_response ) response_tokens = im_start_tokens + response_tokens_part + im_end_tokens next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens prev_chat = ( f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}" ) else: next_context_tokens = nl_tokens + query_tokens + nl_tokens prev_chat = f"\n{im_start}{query_text}{im_end}\n" current_context_size = ( len(system_tokens) + len(next_context_tokens) + len(context_tokens) ) if current_context_size < max_window_size: context_tokens = next_context_tokens + context_tokens raw_text = prev_chat + raw_text else: break context_tokens = system_tokens + context_tokens raw_text = f"{im_start}{system_text}{im_end}" + raw_text context_tokens += ( nl_tokens + im_start_tokens + _tokenize_str("user", query)[1] + im_end_tokens + nl_tokens + im_start_tokens + tokenizer.encode("assistant") + nl_tokens ) raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n" print(raw_text) audio_info = tokenizer.process_audio(raw_text) elif chat_format == "raw": raw_text = query context_tokens = tokenizer.encode(raw_text) else: raise NotImplementedError(f"Unknown chat format {chat_format!r}") return raw_text, context_tokens, audio_info def _decode_default( tokens: List[int], *, stop_words: List[str], eod_words: List[str], tokenizer: PreTrainedTokenizer, raw_text_len: int, verbose: bool = False, return_end_reason: bool = False, errors: str='replace', audio_info:Dict = None ): kwargs = {"audio_info": audio_info} trim_decode_tokens = tokenizer.decode(tokens, errors=errors, **kwargs)[raw_text_len:] if verbose: print("\nRaw Generate: ", trim_decode_tokens) end_reason = f"Gen length {len(tokens)}" for stop_word in stop_words: trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip() for eod_word in eod_words: if eod_word in trim_decode_tokens: end_reason = f"Gen {eod_word!r}" trim_decode_tokens = trim_decode_tokens.split(eod_word)[0] trim_decode_tokens = trim_decode_tokens.strip() if verbose: print("\nEnd Reason:", end_reason) print("\nGenerate: ", trim_decode_tokens) if return_end_reason: return trim_decode_tokens, end_reason else: return trim_decode_tokens def _decode_chatml( tokens: List[int], *, stop_words: List[str], eod_token_ids: List[int], tokenizer: PreTrainedTokenizer, raw_text_len: int, context_length: int, verbose: bool = False, return_end_reason: bool = False, errors: str='replace', audio_info: Dict = None ): kwargs = {"audio_info": audio_info} end_reason = f"Gen length {len(tokens)}" eod_token_idx = context_length for eod_token_idx in range(context_length, len(tokens)): if tokens[eod_token_idx] in eod_token_ids: end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]],**kwargs)!r}" break trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors, **kwargs)[raw_text_len:] if verbose: print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors, **kwargs)[raw_text_len:]) print("\nRaw Generate:", trim_decode_tokens) print("\nEnd Reason:", end_reason) for stop_word in stop_words: trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip() trim_decode_tokens = trim_decode_tokens.strip() if verbose: print("\nGenerate:", trim_decode_tokens) if return_end_reason: return trim_decode_tokens, end_reason else: return trim_decode_tokens def decode_tokens( tokens: Union[torch.LongTensor, TokensType], tokenizer: PreTrainedTokenizer, raw_text_len: int, context_length: int, chat_format: str, verbose: bool = False, return_end_reason: bool = False, errors: str="replace", audio_info: Dict = None ) -> str: if torch.is_tensor(tokens): tokens = tokens.cpu().numpy().tolist() if chat_format == "chatml": return _decode_chatml( tokens, stop_words=[], eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id], tokenizer=tokenizer, raw_text_len=raw_text_len, context_length=context_length, verbose=verbose, return_end_reason=return_end_reason, errors=errors, audio_info=audio_info ) elif chat_format == "raw": return _decode_default( tokens, stop_words=["<|endoftext|>"], eod_words=["<|endoftext|>"], tokenizer=tokenizer, raw_text_len=raw_text_len, verbose=verbose, return_end_reason=return_end_reason, errors=errors, audio_info=audio_info ) else: raise NotImplementedError(f"Unknown chat format {chat_format!r}") class StopWordsLogitsProcessor(LogitsProcessor): """ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration. Args: stop_words_ids (:obj:`List[List[int]]`): List of list of token ids of stop ids. In order to get the tokens of the words that should not appear in the generated text, use :obj:`tokenizer(bad_word, add_prefix_space=True).input_ids`. eos_token_id (:obj:`int`): The id of the `end-of-sequence` token. """ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int): if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0: raise ValueError( f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}." ) if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids): raise ValueError( f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}." ) if any( any( (not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in stop_word_ids ) for stop_word_ids in stop_words_ids ): raise ValueError( f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}." ) self.stop_words_ids = list( filter( lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids ) ) self.eos_token_id = eos_token_id for stop_token_seq in self.stop_words_ids: assert ( len(stop_token_seq) > 0 ), "Stop words token sequences {} cannot have an empty list".format( stop_words_ids ) def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor ) -> torch.FloatTensor: stopped_samples = self._calc_stopped_samples(input_ids) for i, should_stop in enumerate(stopped_samples): if should_stop: scores[i, self.eos_token_id] = float(2**15) return scores def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool: if len(tokens) == 0: # if bad word tokens is just one token always ban it return True elif len(tokens) > len(prev_tokens): # if bad word tokens are longer then prev input_ids they can't be equal return False elif prev_tokens[-len(tokens) :].tolist() == tokens: # if tokens match return True else: return False def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]: stopped_samples = [] for prev_input_ids_slice in prev_input_ids: match = False for stop_token_seq in self.stop_words_ids: if self._tokens_match(prev_input_ids_slice, stop_token_seq): # if tokens do not match continue match = True break stopped_samples.append(match) return stopped_samples def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")): """This function has been mostly taken from huggingface conversational ai code at https://medium.com/huggingface/how-to-build-a-state-of-the-art- conversational-ai-with-transfer-learning-2d818ac26313""" if top_k > 0: # Remove all tokens with a probability less than the # last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: # Cconvert to 1D sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token # above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 for i in range(sorted_indices.size(0)): indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]] logits[i][indices_to_remove] = filter_value return logits def switch(val1, val2, boolean): boolean = boolean.type_as(val1) return (1 - boolean) * val1 + boolean * val2