File size: 23,096 Bytes
532ee9f 169a2f6 0fdb488 169a2f6 9783357 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 9783357 097b63b 169a2f6 7ce5bb5 169a2f6 9783357 169a2f6 097b63b 169a2f6 d8c72a6 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 097b63b 169a2f6 a2c39cd 169a2f6 097b63b 169a2f6 097b63b 8079267 169a2f6 097b63b 169a2f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
---
language:
- zh
- en
tags:
- qwen
pipeline_tag: text-generation
inference: false
---
# Qwen-VL-Chat
<br>
<p align="center">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo.jpg" width="400"/>
<p>
<br>
<p align="center">
Qwen-VL <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-VL">🤗</a>  | Qwen-VL-Chat <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-VL-Chat">🤗</a>  |  <a href="https://modelscope.cn/studios/qwen/Qwen-VL-Chat-Demo/summary">Demo</a>  |  <a href="https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md">Report</a>   |   <a href="https://discord.gg/9bjvspyu">Discord</a>
</p>
<br>
**Qwen-VL** 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型的特点包括:
- **强大的性能**:在四大类多模态任务的标准英文测评中(Zero-shot Caption/VQA/DocVQA/Grounding)上,均取得同等通用模型大小下最好效果;
- **多语言对话模型**:天然支持多语言对话,端到端支持图片里中英双语的长文本识别;
- **多图交错对话**:支持多图输入和比较,指定图片问答,多图文学创作等;
- **首个支持中文开放域定位的通用模型**:通过中文开放域语言表达进行检测框标注;
- **细粒度识别和理解**:相比于目前其它开源LVLM使用的224分辨率,Qwen-VL是首个开源的448分辨率的LVLM模型。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注。
**Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
- **Strong performance**: It significantly surpasses existing open-source Large Vision Language Models (LVLM) under similar scale settings on multiple English evaluation benchmarks (including Zero-shot caption, VQA, DocVQA, and Grounding).
- **Multi-lingual LVLM supporting text recognization**: Qwen-VL naturally supports multi-lingual conversation, and it promotes end-to-end recognition of Chinese and English bi-lingual text in images.
- **Multi-image interleaved conversations**: This feature allows for the input and comparison of multiple images, as well as the ability to specify questions related to the images and engage in multi-image storytelling.
- **First generalist model support grounding in Chinese**: Detecting bounding boxes through open-domain language expression in both Chinese and English.
- **Fine-grained recognization and understanding**: Compared to the 224 resolution currently used by other open-source LVLM, the 448 resolution promotes fine-grained text recognition, document QA, and bounding box annotation.
目前,我们提供了 Qwen-VL 系列的两个模型:
- Qwen-VL: Qwen-VL 以 Qwen-7B 的预训练模型作为语言模型的初始化,并以 [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) 作为视觉编码器的初始化,中间加入单层随机初始化的 cross-attention,经过约1.5B的图文数据训练得到。最终图像输入分辨率为448。
- Qwen-VL-Chat: 在 Qwen-VL 的基础上,我们使用对齐机制打造了基于大语言模型的视觉AI助手Qwen-VL-Chat,其训练数据涵盖了 QWen-7B 的纯文本 SFT 数据、开源 LVLM 的 SFT 数据、数据合成和人工标注的图文对齐数据。
如果想了解更多关于模型的信息,请点击[链接](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md)查看我们的技术备忘录。
We release two models of the Qwen-VL series:
- Qwen-VL: The pre-trained LVLM model uses Qwen-7B as the initialization of the LLM, and [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) as the initialization of the visual encoder. And connects them with a randomly initialized cross-attention layer. Qwen-VL was trained on about 1.5B image-text paired data.
- Qwen-VL-Chat: A multimodal LLM-based AI assistant, which is trained with alignment techniques.
For more details about Qwen-VL, please refer to our [technical memo](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md).
## 评测
我们从两个角度评测了两个模型的能力:
1. 在**英文标准 Benchmark** 上评测模型的基础任务能力。目前评测了四大类多模态任务:
- Zero-shot Caption: 评测模型在未见过数据集上的零样本图片描述能力;
- General VQA: 评测模型的通用问答能力,例如判断题、颜色、个数、类目等问答能力;
- Text-based VQA:评测模型对于图片中文字相关的识别/问答能力,例如文档问答、图表问答、文字问答等;
- Referring Expression Compression:评测模型给定物体描述画检测框的能力;
2. **试金石 (TouchStone)**:为了评测模型整体的图文对话能力和人类对齐水平。我们为此构建了一个基于 GPT4 打分来评测 LVLM 模型的 Benchmark:TouchStone。在 TouchStone-v0.1 中:
- 评测基准总计涵盖 300+张图片、800+道题目、27个类别。包括基础属性问答、人物地标问答、影视作品问答、视觉推理、反事实推理、诗歌创作、故事写作,商品比较、图片解题等**尽可能广泛的类别**。
- 为了弥补目前 GPT4 无法直接读取图片的缺陷,我们给所有的带评测图片提供了**人工标注的充分详细描述**,并且将图片的详细描述、问题和模型的输出结果一起交给 GPT4 打分。
- 评测同时包含英文版本和中文版本。
评测结果如下:
We evaluated the model's ability from two perspectives:
1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
- Zero-shot Caption: Evaluate model's zero-shot image captioning ability on unseen datasets;
- General VQA: Evaluate the general question-answering ability of pictures, such as the judgment, color, number, category, etc;
- Text-based VQA: Evaluate the model's ability to recognize text in pictures, such as document QA, chart QA, etc;
- Referring Expression Comprehension: Evaluate the ability to localize a target object in an image described by a referring expression.
2. **TouchStone**: To evaluate the overall text-image dialogue capability and alignment level with humans, we have constructed a benchmark called TouchStone, which is based on scoring with GPT4 to evaluate the LVLM model.
- The TouchStone benchmark covers a total of 300+ images, 800+ questions, and 27 categories. Such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc;
- In order to break the current limitation of GPT4 in terms of direct image input, TouchStone provides fine-grained image annotations by human labeling. These detailed annotations, along with the questions and the model's output, are then presented to GPT4 for scoring.
- The benchmark includes both English and Chinese versions.
The results of the evaluation are as follows:
Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has a more comprehensive coverage in terms of capability range.
<p align="center">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/radar.png" width="600"/>
<p>
### Zero-shot Captioning & General VQA
<table>
<thead>
<tr>
<th rowspan="2">Model type</th>
<th rowspan="2">Model</th>
<th colspan="2">Zero-shot Captioning</th>
<th colspan="5">General VQA</th>
</tr>
<tr>
<th>NoCaps</th>
<th>Flickr30K</th>
<th>VQAv2<sup>dev</sup></th>
<th>OK-VQA</th>
<th>GQA</th>
<th>SciQA-Img<br>(0-shot)</th>
<th>VizWiz<br>(0-shot)</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td rowspan="10">Generalist<br>Models</td>
<td>Flamingo-9B</td>
<td>-</td>
<td>61.5</td>
<td>51.8</td>
<td>44.7</td>
<td>-</td>
<td>-</td>
<td>28.8</td>
</tr>
<tr>
<td>Flamingo-80B</td>
<td>-</td>
<td>67.2</td>
<td>56.3</td>
<td>50.6</td>
<td>-</td>
<td>-</td>
<td>31.6</td>
</tr>
<tr>
<td>Unified-IO-XL</td>
<td>100.0</td>
<td>-</td>
<td>77.9</td>
<td>54.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kosmos-1</td>
<td>-</td>
<td>67.1</td>
<td>51.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>29.2</td>
</tr>
<tr>
<td>Kosmos-2</td>
<td>-</td>
<td>66.7</td>
<td>45.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BLIP-2 (Vicuna-13B)</td>
<td>103.9</td>
<td>71.6</td>
<td>65.0</td>
<td>45.9</td>
<td>32.3</td>
<td>61.0</td>
<td>19.6</td>
</tr>
<tr>
<td>InstructBLIP (Vicuna-13B)</td>
<td><strong>121.9</strong></td>
<td>82.8</td>
<td>-</td>
<td>-</td>
<td>49.5</td>
<td>63.1</td>
<td>33.4</td>
</tr>
<tr>
<td>Shikra (Vicuna-13B)</td>
<td>-</td>
<td>73.9</td>
<td>77.36</td>
<td>47.16</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td><strong>Qwen-VL (Qwen-7B)</strong></td>
<td>121.4</td>
<td><b>85.8</b></td>
<td><b>78.8</b></td>
<td><b>58.6</b></td>
<td><b>59.3</b></td>
<td>67.1</td>
<td>35.2</td>
</tr>
<!-- <tr>
<td>Qwen-VL (4-shot)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>63.6</td>
<td>-</td>
<td>-</td>
<td>39.1</td>
</tr> -->
<tr>
<td>Qwen-VL-Chat</td>
<td>120.2</td>
<td>81.0</td>
<td>78.2</td>
<td>56.6</td>
<td>57.5</td>
<td><b>68.2</b></td>
<td><b>38.9</b></td>
</tr>
<!-- <tr>
<td>Qwen-VL-Chat (4-shot)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60.6</td>
<td>-</td>
<td>-</td>
<td>44.45</td>
</tr> -->
<tr>
<td>Previous SOTA<br>(Per Task Fine-tuning)</td>
<td>-</td>
<td>127.0<br>(PALI-17B)</td>
<td>84.5<br>(InstructBLIP<br>-FlanT5-XL)</td>
<td>86.1<br>(PALI-X<br>-55B)</td>
<td>66.1<br>(PALI-X<br>-55B)</td>
<td>72.1<br>(CFR)</td>
<td>92.53<br>(LLaVa+<br>GPT-4)</td>
<td>70.9<br>(PALI-X<br>-55B)</td>
</tr>
</tbody>
</table>
- 在 Zero-shot Caption 中,Qwen-VL 在 Flickr30K 数据集上取得了 **SOTA** 的结果,并在 Nocaps 数据集上取得了和 InstructBlip 可竞争的结果。
- 在 General VQA 中,Qwen-VL 取得了 LVLM 模型同等量级和设定下 **SOTA** 的结果。
- For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
- For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.
### Text-oriented VQA (focuse on text understanding capabilities in images)
<table>
<thead>
<tr>
<th>Model type</th>
<th>Model</th>
<th>TextVQA</th>
<th>DocVQA</th>
<th>ChartQA</th>
<th>AI2D</th>
<th>OCR-VQA</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td rowspan="5">Generalist Models</td>
<td>BLIP-2 (Vicuna-13B)</td>
<td>42.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>InstructBLIP (Vicuna-13B)</td>
<td>50.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mPLUG-DocOwl (LLaMA-7B)</td>
<td>52.6</td>
<td>62.2</td>
<td>57.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pic2Struct-Large (1.3B)</td>
<td>-</td>
<td><b>76.6</b></td>
<td>58.6</td>
<td>42.1</td>
<td>71.3</td>
</tr>
<tr>
<td>Qwen-VL (Qwen-7B)</td>
<td><b>63.8</b></td>
<td>65.1</td>
<td><b>65.7</b></td>
<td><b>62.3</b></td>
<td><b>75.7</b></td>
</tr>
<tr>
<td>Specialist SOTAs<br>(Specialist/Finetuned)</td>
<td>PALI-X-55B (Single-task FT)<br>(Without OCR Pipeline)</td>
<td>71.44</td>
<td>80.0</td>
<td>70.0</td>
<td>81.2</td>
<td>75.0</td>
</tr>
</tbody>
</table>
- 在文字相关的识别/问答评测上,取得了当前规模下通用 LVLM 达到的最好结果。
- 分辨率对上述某几个评测非常重要,大部分 224 分辨率的开源 LVLM 模型无法完成以上评测,或只能通过切图的方式解决。Qwen-VL 将分辨率提升到 448,可以直接以端到端的方式进行以上评测。Qwen-VL 在很多任务上甚至超过了 1024 分辨率的 Pic2Struct-Large 模型。
- In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
- Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.
### Referring Expression Comprehension
<table>
<thead>
<tr>
<th rowspan="2">Model type</th>
<th rowspan="2">Model</th>
<th colspan="3">RefCOCO</th>
<th colspan="3">RefCOCO+</th>
<th colspan="2">RefCOCOg</th>
<th>GRIT</th>
</tr>
<tr>
<th>val</th>
<th>test-A</th>
<th>test-B</th>
<th>val</th>
<th>test-A</th>
<th>test-B</th>
<th>val-u</th>
<th>test-u</th>
<th>refexp</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td rowspan="8">Generalist Models</td>
<td>GPV-2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>51.50</td>
</tr>
<tr>
<td>OFA-L*</td>
<td>79.96</td>
<td>83.67</td>
<td>76.39</td>
<td>68.29</td>
<td>76.00</td>
<td>61.75</td>
<td>67.57</td>
<td>67.58</td>
<td>61.70</td>
</tr>
<tr>
<td>Unified-IO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><b>78.61</b></td>
</tr>
<tr>
<td>VisionLLM-H</td>
<td></td>
<td>86.70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shikra-7B</td>
<td>87.01</td>
<td>90.61</td>
<td>80.24 </td>
<td>81.60</td>
<td>87.36</td>
<td>72.12</td>
<td>82.27</td>
<td>82.19</td>
<td>69.34</td>
</tr>
<tr>
<td>Shikra-13B</td>
<td>87.83 </td>
<td>91.11</td>
<td>81.81</td>
<td>82.89</td>
<td>87.79</td>
<td>74.41</td>
<td>82.64</td>
<td>83.16</td>
<td>69.03</td>
</tr>
<tr>
<td>Qwen-VL-7B</td>
<td><b>89.36</b></td>
<td>92.26</td>
<td><b>85.34</b></td>
<td><b>83.12</b></td>
<td>88.25</td>
<td><b>77.21</b></td>
<td>85.58</td>
<td>85.48</td>
<td>78.22</td>
</tr>
<tr>
<td>Qwen-VL-7B-Chat</td>
<td>88.55</td>
<td><b>92.27</b></td>
<td>84.51</td>
<td>82.82</td>
<td><b>88.59</b></td>
<td>76.79</td>
<td><b>85.96</b></td>
<td><b>86.32</b></td>
<td>-</td>
<tr>
<td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td>
<td>G-DINO-L</td>
<td>90.56 </td>
<td>93.19</td>
<td>88.24</td>
<td>82.75</td>
<td>88.95</td>
<td>75.92</td>
<td>86.13</td>
<td>87.02</td>
<td>-</td>
</tr>
<tr>
<td>UNINEXT-H</td>
<td>92.64 </td>
<td>94.33</td>
<td>91.46</td>
<td>85.24</td>
<td>89.63</td>
<td>79.79</td>
<td>88.73</td>
<td>89.37</td>
<td>-</td>
</tr>
<tr>
<td>ONE-PEACE</td>
<td>92.58 </td>
<td>94.18</td>
<td>89.26</td>
<td>88.77</td>
<td>92.21</td>
<td>83.23</td>
<td>89.22</td>
<td>89.27</td>
<td>-</td>
</tr>
</tbody>
</table>
- 在定位任务上,Qwen-VL 全面超过 Shikra-13B,取得了目前 Generalist LVLM 模型上在 Refcoco 上的 **SOTA**。
- Qwen-VL 并没有在任何中文定位数据上训练过,但通过中文 Caption 数据和 英文 Grounding 数据的训练,可以 Zero-shot 泛化出中文 Grounding 能力。
我们提供了以上**所有**评测脚本以供复现我们的实验结果。请阅读 [eval/EVALUATION.md](eval/EVALUATION.md) 了解更多信息。
- Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
- Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.
We provide all of the above evaluation scripts for reproducing our experimental results. Please read [eval/EVALUATION.md](eval/EVALUATION.md) for more information.
### Chat evaluation
TouchStone 是一个基于 GPT4 打分来评测 LVLM 模型的图文对话能力和人类对齐水平的基准。它涵盖了 300+张图片、800+道题目、27个类别,包括基础属性、人物地标、视觉推理、诗歌创作、故事写作、商品比较、图片解题等**尽可能广泛的类别**。关于 TouchStone 的详细介绍,请参考[touchstone/README_CN.md](touchstone/README_CN.md)了解更多信息。
TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.
#### English evaluation
| Model | Score |
|---------------|-------|
| PandaGPT | 488.5 |
| MiniGPT4 | 531.7 |
| InstructBLIP | 552.4 |
| LLaMA-AdapterV2 | 590.1 |
| mPLUG-Owl | 605.4 |
| LLaVA | 602.7 |
| Qwen-VL-Chat | 645.2 |
#### Chinese evaluation
| Model | Score |
|---------------|-------|
| VisualGLM | 247.1 |
| Qwen-VL-Chat | 401.2 |
Qwen-VL-Chat 模型在中英文的对齐评测中均取得当前 LVLM 模型下的最好结果。
Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.
## Requirements
* python 3.8及以上版本
* pytorch 1.12及以上版本,推荐2.0及以上版本
* 建议使用CUDA 11.4及以上(GPU用户需考虑此选项)
* python 3.8 and above
* pytorch 1.12 and above, 2.0 and above are recommended
* CUDA 11.4 and above are recommended (this is for GPU users)
## Quickstart
我们提供简单的示例来说明如何利用 🤗 Transformers 快速使用 Qwen-VL 和 Qwen-VL-Chat。
在开始前,请确保你已经配置好环境并安装好相关的代码包。最重要的是,确保你满足上述要求,然后安装相关的依赖库。
Below, we provide simple examples to show how to use Qwen-VL and Qwen-VL-Chat with 🤗 Transformers.
Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
```bash
pip install -r requirements.txt
```
接下来你可以开始使用Transformers来使用我们的模型。关于视觉模块的更多用法,请参考[教程](TUTORIAL.md)。
Now you can start with Transformers. More usage aboue vision encoder, please refer to [tutorial](TUTORIAL_zh.md).
#### 🤗 Transformers
To use Qwen-VL-Chat for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
torch.manual_seed(1234)
# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)
# use bf16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="cpu", trust_remote_code=True).eval()
# use cuda device
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="cuda", trust_remote_code=True).eval()
# Specify hyperparameters for generation
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)
# 1st dialogue turn
query = tokenizer.from_list_format([
{'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'},
{'text': '这是什么'},
])
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
# 图中是一名年轻女子在沙滩上和她的狗玩耍,狗的品种可能是拉布拉多。她们坐在沙滩上,狗的前腿抬起来,似乎在和人类击掌。两人之间充满了信任和爱。
# 2st dialogue turn
response, history = model.chat(tokenizer, '输出"击掌"的检测框', history=history)
print(response)
# <ref>击掌</ref><box>(517,508),(589,611)</box>
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image:
image.save('1.jpg')
else:
print("no box")
```
<p align="center">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo_highfive.jpg" width="500"/>
<p>
## FAQ
如遇到问题,敬请查阅 [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ.md) and the issues first to search a solution before you launch a new issue.
## License Agreement
研究人员与开发者可使用Qwen-VL和Qwen-VL-Chat或进行二次开发。我们同样允许商业使用,具体细节请查看[LICENSE](https://github.com/QwenLM/Qwen-VL/blob/master/LICENSE)。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
Researchers and developers are free to use the codes and model weights of both Qwen-VL and Qwen-VL-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.
## Contact Us
如果你想给我们的研发团队和产品团队留言,请通过邮件(qianwen_opensource@alibabacloud.com)联系我们。
If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen_opensource@alibabacloud.com.
|