File size: 2,308 Bytes
853b18c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xlsr-fi-lm-1B
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-fi-lm-1B
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1853
- Wer: 0.2205
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8158 | 0.67 | 400 | 0.4835 | 0.6310 |
| 0.5679 | 1.33 | 800 | 0.4806 | 0.5538 |
| 0.6055 | 2.0 | 1200 | 0.3888 | 0.5083 |
| 0.5353 | 2.67 | 1600 | 0.3258 | 0.4365 |
| 0.4883 | 3.33 | 2000 | 0.3313 | 0.4204 |
| 0.4513 | 4.0 | 2400 | 0.2924 | 0.3904 |
| 0.3753 | 4.67 | 2800 | 0.2593 | 0.3608 |
| 0.3478 | 5.33 | 3200 | 0.2832 | 0.3551 |
| 0.3796 | 6.0 | 3600 | 0.2495 | 0.3402 |
| 0.2556 | 6.67 | 4000 | 0.2342 | 0.3106 |
| 0.229 | 7.33 | 4400 | 0.2181 | 0.2812 |
| 0.205 | 8.0 | 4800 | 0.2041 | 0.2523 |
| 0.1654 | 8.67 | 5200 | 0.2015 | 0.2416 |
| 0.152 | 9.33 | 5600 | 0.1942 | 0.2294 |
| 0.1569 | 10.0 | 6000 | 0.1853 | 0.2205 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|