File size: 2,492 Bytes
1b63220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
library_name: peft
tags:
- summarization
- generated_from_trainer
datasets:
- gov_report_summarization_dataset
metrics:
- rouge
base_model: google/flan-t5-base
model-index:
- name: flan-t5-base-finetuned-govReport-3072
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-base-finetuned-govReport-3072

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the gov_report_summarization_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 0.042
- Rouge2: 0.0216
- Rougel: 0.0379
- Rougelsum: 0.0406

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 0.0           | 1.0   | 250  | nan             | 0.042  | 0.0216 | 0.0379 | 0.0406    |
| 0.0           | 2.0   | 500  | nan             | 0.042  | 0.0216 | 0.0379 | 0.0406    |
| 0.0           | 3.0   | 750  | nan             | 0.042  | 0.0216 | 0.0379 | 0.0406    |
| 0.0           | 4.0   | 1000 | nan             | 0.042  | 0.0216 | 0.0379 | 0.0406    |
| 0.0           | 5.0   | 1250 | nan             | 0.042  | 0.0216 | 0.0379 | 0.0406    |
| 0.0           | 6.0   | 1500 | nan             | 0.042  | 0.0216 | 0.0379 | 0.0406    |
| 0.0           | 7.0   | 1750 | nan             | 0.042  | 0.0216 | 0.0379 | 0.0406    |
| 0.0           | 8.0   | 2000 | nan             | 0.042  | 0.0216 | 0.0379 | 0.0406    |
| 0.0           | 9.0   | 2250 | nan             | 0.042  | 0.0216 | 0.0379 | 0.0406    |
| 0.0           | 10.0  | 2500 | nan             | 0.042  | 0.0216 | 0.0379 | 0.0406    |


### Framework versions

- PEFT 0.8.2
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1