--- tags: - generated_from_trainer language: ja widget: - text: 🤗セグメント利益は、前期比8.3%増の24億28百万円となった metrics: - accuracy - f1 model-index: - name: Japanese-sentiment-analysis results: [] datasets: - jarvisx17/chABSA --- # japanese-sentiment-analysis This model is the work of jarvisx17 and was trained from scratch on the chABSA dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0 - F1: 1.0 ## Model description Model Train for Japanese sentence sentiments. ## Intended uses & limitations The model was trained on chABSA Japanese dataset. DATASET link : https://www.kaggle.com/datasets/takahirokubo0/chabsa ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ## Usage You can use cURL to access this model: Python API: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("jarvisx17/japanese-sentiment-analysis") model = AutoModelForSequenceClassification.from_pretrained("jarvisx17/japanese-sentiment-analysis") inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ``` ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2 ### Dependencies - !pip install fugashi - !pip install unidic_lite