Create s.py
Browse files
s.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
|
7 |
+
|
8 |
+
# Let's chat for 5 lines
|
9 |
+
for step in range(5):
|
10 |
+
# encode the new user input, add the eos_token and return a tensor in Pytorch
|
11 |
+
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
|
12 |
+
|
13 |
+
# append the new user input tokens to the chat history
|
14 |
+
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
|
15 |
+
|
16 |
+
# generated a response while limiting the total chat history to 1000 tokens,
|
17 |
+
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
18 |
+
|
19 |
+
# pretty print last ouput tokens from bot
|
20 |
+
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
|