--- datasets: - EleutherAI/pile --- ![RWKlogo.png](https://s3.amazonaws.com/moonup/production/uploads/62441d1d9fdefb55a0b7d12c/UWpP-lGRZJJDaEx_uUlDv.png) # Model card for RWKV-4 | 7B parameters trained on Pile dataset RWKV is a project led by [Bo Peng](https://github.com/BlinkDL). Learn more about the model architecture in the blogposts from Johan Wind [here](https://johanwind.github.io/2023/03/23/rwkv_overview.html) and [here](https://johanwind.github.io/2023/03/23/rwkv_details.html). Learn more about the project by joining the [RWKV discord server](https://discordapp.com/users/468093332535640064). # Table of contents 0. [TL;DR](#TL;DR) 1. [Model Details](#model-details) 2. [Usage](#usage) 3. [Citation](#citation) ## TL;DR Below is the description from the [original repository](https://github.com/BlinkDL/RWKV-LM) > RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). It's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding. ## Model Details The details of the architecture can be found on the blogpost mentioned above and the Hugging Face blogpost of the integration. ## Usage ### Convert the raw weights to the HF format You can use the [`convert_rwkv_checkpoint_to_hf.py`](https://github.com/huggingface/transformers/tree/main/src/transformers/models/rwkv/convert_rwkv_checkpoint_to_hf.py) script by specifying the repo_id of the original weights, the filename and the output directory. You can also optionally directly push the converted model on the Hub by passing `--push_to_hub` flag and `--model_name` argument to specify where to push the converted weights. ```bash python convert_rwkv_checkpoint_to_hf.py --repo_id RAW_HUB_REPO --checkpoint_file RAW_FILE --output_dir OUTPUT_DIR --push_to_hub --model_name dummy_user/converted-rwkv ``` ### Generate text You can use the `AutoModelForCausalLM` and `AutoTokenizer` classes to generate texts from the model. Expand the sections below to understand how to run the model in different scenarios: ### Running the model on a CPU
Click to expand ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-7b-pile") tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-7b-pile") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ``` ### Running the model on a single GPU
Click to expand ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-7b-pile").to(0) tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-7b-pile") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ```
### Running the model in half-precision, on GPU
Click to expand ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-7b-pile", torch_dtype=torch.float16).to(0) tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-7b-pile") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ```
### Running the model multiple GPUs
Click to expand ```python # pip install accelerate from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-7b-pile", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-7b-pile") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ```
## Citation If you use this model, please consider citing the original work, from the original repo [here](https://github.com/BlinkDL/ChatRWKV/)