KaleiNeely
commited on
Commit
•
70edb73
1
Parent(s):
2ff3172
Delete tokenization_rwkv_world.py
Browse files- tokenization_rwkv_world.py +0 -549
tokenization_rwkv_world.py
DELETED
@@ -1,549 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Tokenization classes for RWKV5."""
|
16 |
-
|
17 |
-
import json
|
18 |
-
import os
|
19 |
-
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
20 |
-
|
21 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
22 |
-
from transformers.tokenization_utils_base import (
|
23 |
-
BatchEncoding,
|
24 |
-
EncodedInput,
|
25 |
-
TextInput,
|
26 |
-
TruncationStrategy,
|
27 |
-
)
|
28 |
-
from transformers.utils import PaddingStrategy, TensorType, logging, to_py_obj
|
29 |
-
|
30 |
-
|
31 |
-
if TYPE_CHECKING:
|
32 |
-
from transformers.pipelines.conversational import Conversation
|
33 |
-
|
34 |
-
logger = logging.get_logger(__name__)
|
35 |
-
|
36 |
-
VOCAB_FILES_NAMES = {
|
37 |
-
"vocab_file": "rwkv_vocab_v20230424.txt",
|
38 |
-
}
|
39 |
-
PRETRAINED_VOCAB_FILES_MAP = {
|
40 |
-
"vocab_file": {
|
41 |
-
"RWKV/rwkv-5-world-169m": "https://huggingface.co/RWKV/rwkv-5-world-169m/blob/main/rwkv_vocab_v20230424.txt",
|
42 |
-
},
|
43 |
-
}
|
44 |
-
|
45 |
-
|
46 |
-
class TRIE:
|
47 |
-
__slots__ = tuple("ch,to,values,front".split(","))
|
48 |
-
to: list
|
49 |
-
values: set
|
50 |
-
|
51 |
-
def __init__(self, front=None, ch=None):
|
52 |
-
self.ch = ch
|
53 |
-
self.to = [None for ch in range(256)]
|
54 |
-
self.values = set()
|
55 |
-
self.front = front
|
56 |
-
|
57 |
-
def __repr__(self):
|
58 |
-
fr = self
|
59 |
-
ret = []
|
60 |
-
while fr is not None:
|
61 |
-
if fr.ch is not None:
|
62 |
-
ret.append(fr.ch)
|
63 |
-
fr = fr.front
|
64 |
-
return "<TRIE %s %s>" % (ret[::-1], self.values)
|
65 |
-
|
66 |
-
def add(self, key: bytes, idx: int = 0, val=None):
|
67 |
-
if idx == len(key):
|
68 |
-
if val is None:
|
69 |
-
val = key
|
70 |
-
self.values.add(val)
|
71 |
-
return self
|
72 |
-
ch = key[idx]
|
73 |
-
if self.to[ch] is None:
|
74 |
-
self.to[ch] = TRIE(front=self, ch=ch)
|
75 |
-
return self.to[ch].add(key, idx=idx + 1, val=val)
|
76 |
-
|
77 |
-
def find_longest(self, key: bytes, idx: int = 0):
|
78 |
-
u: TRIE = self
|
79 |
-
ch: int = key[idx]
|
80 |
-
|
81 |
-
while u.to[ch] is not None:
|
82 |
-
u = u.to[ch]
|
83 |
-
idx += 1
|
84 |
-
if u.values:
|
85 |
-
ret = idx, u, u.values
|
86 |
-
if idx == len(key):
|
87 |
-
break
|
88 |
-
ch = key[idx]
|
89 |
-
return ret
|
90 |
-
|
91 |
-
|
92 |
-
class RWKVWorldTokenizer(PreTrainedTokenizer):
|
93 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
94 |
-
model_input_names = ["input_ids", "attention_mask"]
|
95 |
-
|
96 |
-
def __init__(self, vocab_file, errors="replace", pad_token="0", **kwargs):
|
97 |
-
self.add_bos_token = False
|
98 |
-
self.encoder = {}
|
99 |
-
sorted = [] # must be already sorted
|
100 |
-
with open(vocab_file, "r", encoding="utf-8") as f:
|
101 |
-
lines = f.readlines()
|
102 |
-
for l in lines:
|
103 |
-
idx = int(l[: l.index(" ")])
|
104 |
-
x = eval(l[l.index(" ") : l.rindex(" ")])
|
105 |
-
x = x.encode("utf-8") if isinstance(x, str) else x
|
106 |
-
assert isinstance(x, bytes)
|
107 |
-
assert len(x) == int(l[l.rindex(" ") :])
|
108 |
-
sorted += [x]
|
109 |
-
self.encoder[idx] = x
|
110 |
-
|
111 |
-
self.decoder = {}
|
112 |
-
for k, v in self.encoder.items():
|
113 |
-
self.decoder[v] = int(k)
|
114 |
-
|
115 |
-
self.trie = TRIE()
|
116 |
-
for t, i in self.decoder.items():
|
117 |
-
_ = self.trie.add(t, val=(t, i))
|
118 |
-
self.errors = errors # how to handle errors in decoding
|
119 |
-
self.cache = {}
|
120 |
-
self.first_max_length = 0
|
121 |
-
super().__init__(
|
122 |
-
errors=errors,
|
123 |
-
**kwargs,
|
124 |
-
)
|
125 |
-
|
126 |
-
@property
|
127 |
-
def eos_token_id(self) -> Optional[int]:
|
128 |
-
return 0
|
129 |
-
|
130 |
-
@property
|
131 |
-
def eot_token_id(self) -> Optional[int]:
|
132 |
-
return 0
|
133 |
-
|
134 |
-
@property
|
135 |
-
def pad_token_id(self) -> Optional[int]:
|
136 |
-
return 0
|
137 |
-
|
138 |
-
@property
|
139 |
-
def vocab_size(self):
|
140 |
-
return len(self.encoder)
|
141 |
-
|
142 |
-
def get_vocab(self):
|
143 |
-
return dict(self.encoder, **self.added_tokens_encoder)
|
144 |
-
|
145 |
-
def add_tokens(self, new_tokens, special_tokens: bool = False):
|
146 |
-
for token in new_tokens:
|
147 |
-
token_id = self.convert_tokens_to_ids(token)
|
148 |
-
self.added_tokens_decoder[token_id] = token
|
149 |
-
|
150 |
-
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
|
151 |
-
if isinstance(ids, int):
|
152 |
-
ids = [ids]
|
153 |
-
tokens = []
|
154 |
-
for id_ in ids:
|
155 |
-
if id_ in self.added_tokens_decoder:
|
156 |
-
tokens.append(self.added_tokens_decoder[id_])
|
157 |
-
else:
|
158 |
-
tokens.append(self._convert_id_to_token(id_))
|
159 |
-
return tokens
|
160 |
-
|
161 |
-
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
162 |
-
if self.add_bos_token:
|
163 |
-
bos_token_ids = [self.bos_token_id]
|
164 |
-
else:
|
165 |
-
bos_token_ids = []
|
166 |
-
|
167 |
-
output = bos_token_ids + token_ids_0
|
168 |
-
|
169 |
-
if token_ids_1 is None:
|
170 |
-
return output
|
171 |
-
|
172 |
-
return output + bos_token_ids + token_ids_1
|
173 |
-
|
174 |
-
def get_special_tokens_mask(
|
175 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
176 |
-
) -> List[int]:
|
177 |
-
"""
|
178 |
-
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
179 |
-
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
180 |
-
|
181 |
-
Args:
|
182 |
-
token_ids_0 (`List[int]`):
|
183 |
-
List of IDs.
|
184 |
-
token_ids_1 (`List[int]`, *optional*):
|
185 |
-
Optional second list of IDs for sequence pairs.
|
186 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
187 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
188 |
-
|
189 |
-
Returns:
|
190 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
191 |
-
"""
|
192 |
-
if already_has_special_tokens:
|
193 |
-
return super().get_special_tokens_mask(
|
194 |
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
195 |
-
)
|
196 |
-
|
197 |
-
if not self.add_bos_token:
|
198 |
-
return super().get_special_tokens_mask(
|
199 |
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
|
200 |
-
)
|
201 |
-
|
202 |
-
if token_ids_1 is None:
|
203 |
-
return [1] + ([0] * len(token_ids_0))
|
204 |
-
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
205 |
-
|
206 |
-
def encodeBytes(self, src: bytes):
|
207 |
-
idx: int = 0
|
208 |
-
tokens = []
|
209 |
-
while idx < len(src):
|
210 |
-
_idx: int = idx
|
211 |
-
idx, _, values = self.trie.find_longest(src, idx)
|
212 |
-
assert idx != _idx
|
213 |
-
_, token = next(iter(values))
|
214 |
-
tokens.append(token)
|
215 |
-
return tokens
|
216 |
-
|
217 |
-
def decodeBytes(self, tokens):
|
218 |
-
return b"".join(map(lambda i: self.encoder[i], tokens)) # noqa
|
219 |
-
|
220 |
-
def _tokenize(self, text, **kwargs):
|
221 |
-
"""Tokenize a string."""
|
222 |
-
return self.encodeBytes(text.encode("utf-8"))
|
223 |
-
|
224 |
-
def _decode_tokens(self, tokens):
|
225 |
-
try:
|
226 |
-
return self.decodeBytes(tokens).decode("utf-8")
|
227 |
-
except Exception:
|
228 |
-
return "\ufffd" # bad utf-8
|
229 |
-
|
230 |
-
def _decode(
|
231 |
-
self,
|
232 |
-
token_ids: Union[int, List[int]],
|
233 |
-
skip_special_tokens: bool = False,
|
234 |
-
**kwargs,
|
235 |
-
) -> str:
|
236 |
-
def remove_zeros_from_first_segment(token_ids, first_max_length):
|
237 |
-
first_segment = token_ids[:first_max_length]
|
238 |
-
first_segment_cleaned = [token for token in first_segment if token != 0]
|
239 |
-
return first_segment_cleaned + token_ids[first_max_length:]
|
240 |
-
|
241 |
-
# Convert inputs to python lists
|
242 |
-
token_ids = to_py_obj(token_ids)
|
243 |
-
token_ids = remove_zeros_from_first_segment(token_ids, self.first_max_length)
|
244 |
-
if isinstance(token_ids, int):
|
245 |
-
if token_ids in self.all_special_ids and skip_special_tokens:
|
246 |
-
return ""
|
247 |
-
return self.encoder.get(token_ids, self.unk_token)
|
248 |
-
elif isinstance(token_ids, list):
|
249 |
-
self.first_max_length
|
250 |
-
out_str = ""
|
251 |
-
out_last = 0
|
252 |
-
out_tokens = []
|
253 |
-
for i, token in enumerate(token_ids):
|
254 |
-
if token == 0:
|
255 |
-
break
|
256 |
-
out_tokens += [token]
|
257 |
-
tmp = self._decode_tokens(out_tokens[out_last:])
|
258 |
-
if "\ufffd" not in tmp:
|
259 |
-
out_str += tmp
|
260 |
-
out_last = i + 1
|
261 |
-
return out_str
|
262 |
-
else:
|
263 |
-
return token_ids
|
264 |
-
|
265 |
-
def _convert_token_to_id(self, token):
|
266 |
-
"""Converts a token (str) in an id using the vocab."""
|
267 |
-
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
268 |
-
|
269 |
-
def _convert_id_to_token(self, index):
|
270 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
271 |
-
return self.decoder.get(index)
|
272 |
-
|
273 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
274 |
-
if not os.path.exists(save_directory):
|
275 |
-
os.mkdir(save_directory)
|
276 |
-
if not os.path.isdir(save_directory):
|
277 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
278 |
-
return
|
279 |
-
vocab_file = os.path.join(
|
280 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
281 |
-
)
|
282 |
-
|
283 |
-
with open(vocab_file, "w", encoding="utf-8") as f:
|
284 |
-
for idx, x in self.encoder.items():
|
285 |
-
if isinstance(x, str):
|
286 |
-
x = x.decode("utf-8")
|
287 |
-
line = f"{idx} {repr(x)} {len(x)}\n"
|
288 |
-
f.write(line)
|
289 |
-
|
290 |
-
return (vocab_file,)
|
291 |
-
|
292 |
-
def prepare_for_tokenization(self, text, **kwargs):
|
293 |
-
return (text, kwargs)
|
294 |
-
|
295 |
-
def _get_padding_truncation_strategies(
|
296 |
-
self, padding=False, truncation=None, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
|
297 |
-
):
|
298 |
-
return PaddingStrategy.LONGEST, TruncationStrategy.DO_NOT_TRUNCATE, -1, kwargs
|
299 |
-
|
300 |
-
def _encode_plus(
|
301 |
-
self,
|
302 |
-
text: Union[TextInput, EncodedInput],
|
303 |
-
add_special_tokens: bool = True,
|
304 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
305 |
-
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
306 |
-
max_length: Optional[int] = None,
|
307 |
-
stride: int = 0,
|
308 |
-
pad_to_multiple_of: Optional[int] = None,
|
309 |
-
return_tensors: Optional[Union[str, TensorType]] = None,
|
310 |
-
return_token_type_ids: Optional[bool] = None,
|
311 |
-
return_attention_mask: Optional[bool] = None,
|
312 |
-
return_overflowing_tokens: bool = False,
|
313 |
-
return_special_tokens_mask: bool = False,
|
314 |
-
return_offsets_mapping: bool = False,
|
315 |
-
return_length: bool = False,
|
316 |
-
verbose: bool = True,
|
317 |
-
**kwargs,
|
318 |
-
) -> BatchEncoding:
|
319 |
-
def get_input_ids(text, max_length=None, pad_token_id=0):
|
320 |
-
def pad_sequence(seq, max_len, pad_tok):
|
321 |
-
return [pad_tok] * (max_len - len(seq)) + seq
|
322 |
-
|
323 |
-
if isinstance(text, str):
|
324 |
-
tokens = self._tokenize(text)
|
325 |
-
if max_length is not None:
|
326 |
-
tokens = pad_sequence(tokens, max_length, pad_token_id)
|
327 |
-
return tokens
|
328 |
-
|
329 |
-
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
|
330 |
-
tokenized_texts = [self._tokenize(t) for t in text]
|
331 |
-
if max_length is None:
|
332 |
-
max_length = max(len(t) for t in tokenized_texts)
|
333 |
-
return [pad_sequence(t, max_length, pad_token_id) for t in tokenized_texts]
|
334 |
-
|
335 |
-
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
336 |
-
if max_length is not None and len(text) < max_length:
|
337 |
-
return pad_sequence(text, max_length, pad_token_id)
|
338 |
-
return text
|
339 |
-
|
340 |
-
else:
|
341 |
-
raise ValueError(
|
342 |
-
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
|
343 |
-
)
|
344 |
-
|
345 |
-
if return_offsets_mapping:
|
346 |
-
raise NotImplementedError(
|
347 |
-
"return_offset_mapping is not available when using Python tokenizers. "
|
348 |
-
"To use this feature, change your tokenizer to one deriving from "
|
349 |
-
"transformers.PreTrainedTokenizerFast. "
|
350 |
-
"More information on available tokenizers at "
|
351 |
-
"https://github.com/huggingface/transformers/pull/2674"
|
352 |
-
)
|
353 |
-
|
354 |
-
first_ids = get_input_ids(text)
|
355 |
-
|
356 |
-
return self.prepare_for_model(
|
357 |
-
first_ids,
|
358 |
-
pair_ids=None,
|
359 |
-
add_special_tokens=add_special_tokens,
|
360 |
-
padding=padding_strategy.value,
|
361 |
-
truncation=truncation_strategy.value,
|
362 |
-
max_length=max_length,
|
363 |
-
stride=stride,
|
364 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
365 |
-
return_tensors=return_tensors,
|
366 |
-
prepend_batch_axis=True,
|
367 |
-
return_attention_mask=return_attention_mask,
|
368 |
-
return_token_type_ids=return_token_type_ids,
|
369 |
-
return_overflowing_tokens=return_overflowing_tokens,
|
370 |
-
return_special_tokens_mask=return_special_tokens_mask,
|
371 |
-
return_length=return_length,
|
372 |
-
verbose=verbose,
|
373 |
-
)
|
374 |
-
|
375 |
-
def _batch_encode_plus(
|
376 |
-
self,
|
377 |
-
batch_text_or_text_pairs: Union[
|
378 |
-
List[TextInput],
|
379 |
-
List[EncodedInput],
|
380 |
-
],
|
381 |
-
add_special_tokens: bool = True,
|
382 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
383 |
-
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
384 |
-
max_length: Optional[int] = None,
|
385 |
-
stride: int = 0,
|
386 |
-
pad_to_multiple_of: Optional[int] = None,
|
387 |
-
return_tensors: Optional[Union[str, TensorType]] = None,
|
388 |
-
return_token_type_ids: Optional[bool] = None,
|
389 |
-
return_attention_mask: Optional[bool] = None,
|
390 |
-
return_overflowing_tokens: bool = False,
|
391 |
-
return_special_tokens_mask: bool = False,
|
392 |
-
return_offsets_mapping: bool = False,
|
393 |
-
return_length: bool = False,
|
394 |
-
verbose: bool = True,
|
395 |
-
**kwargs,
|
396 |
-
) -> BatchEncoding:
|
397 |
-
def get_input_ids(text, max_length=None, pad_token_id=0):
|
398 |
-
def pad_sequence(seq, max_len, pad_tok):
|
399 |
-
return [pad_tok] * (max_len - len(seq)) + seq
|
400 |
-
|
401 |
-
if isinstance(text, str):
|
402 |
-
tokens = self._tokenize(text)
|
403 |
-
if max_length is not None:
|
404 |
-
tokens = pad_sequence(tokens, max_length, pad_token_id)
|
405 |
-
return tokens
|
406 |
-
|
407 |
-
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
|
408 |
-
tokenized_texts = [self._tokenize(t) for t in text]
|
409 |
-
if max_length is None:
|
410 |
-
max_length = max(len(t) for t in tokenized_texts)
|
411 |
-
return [pad_sequence(t, max_length, pad_token_id) for t in tokenized_texts]
|
412 |
-
|
413 |
-
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
414 |
-
if max_length is not None and len(text) < max_length:
|
415 |
-
return pad_sequence(text, max_length, pad_token_id)
|
416 |
-
return text
|
417 |
-
|
418 |
-
else:
|
419 |
-
raise ValueError(
|
420 |
-
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
|
421 |
-
)
|
422 |
-
|
423 |
-
if return_offsets_mapping:
|
424 |
-
raise NotImplementedError(
|
425 |
-
"return_offset_mapping is not available when using Python tokenizers. "
|
426 |
-
"To use this feature, change your tokenizer to one deriving from "
|
427 |
-
"transformers.PreTrainedTokenizerFast."
|
428 |
-
)
|
429 |
-
|
430 |
-
first_max_length = 0
|
431 |
-
second_max_length = 0
|
432 |
-
for ids_or_pair_ids in batch_text_or_text_pairs:
|
433 |
-
if not isinstance(ids_or_pair_ids, (list, tuple)):
|
434 |
-
ids, pair_ids = ids_or_pair_ids, None
|
435 |
-
else:
|
436 |
-
ids, pair_ids = ids_or_pair_ids
|
437 |
-
first_ids = get_input_ids(ids)
|
438 |
-
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
|
439 |
-
first_max_length = max(first_max_length, len(first_ids))
|
440 |
-
if second_ids is not None:
|
441 |
-
second_max_length = max(second_max_length, len(second_ids))
|
442 |
-
|
443 |
-
self.first_max_length = first_max_length
|
444 |
-
input_ids = []
|
445 |
-
for ids_or_pair_ids in batch_text_or_text_pairs:
|
446 |
-
if not isinstance(ids_or_pair_ids, (list, tuple)):
|
447 |
-
ids, pair_ids = ids_or_pair_ids, None
|
448 |
-
else:
|
449 |
-
ids, pair_ids = ids_or_pair_ids
|
450 |
-
|
451 |
-
first_ids = get_input_ids(ids, max_length=first_max_length)
|
452 |
-
second_ids = get_input_ids(pair_ids, max_length=second_max_length) if pair_ids is not None else None
|
453 |
-
input_ids.append((first_ids, second_ids))
|
454 |
-
|
455 |
-
batch_outputs = self._batch_prepare_for_model(
|
456 |
-
input_ids,
|
457 |
-
add_special_tokens=add_special_tokens,
|
458 |
-
padding_strategy=padding_strategy,
|
459 |
-
truncation_strategy=truncation_strategy,
|
460 |
-
max_length=max_length,
|
461 |
-
stride=stride,
|
462 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
463 |
-
return_attention_mask=return_attention_mask,
|
464 |
-
return_token_type_ids=return_token_type_ids,
|
465 |
-
return_overflowing_tokens=return_overflowing_tokens,
|
466 |
-
return_special_tokens_mask=return_special_tokens_mask,
|
467 |
-
return_length=return_length,
|
468 |
-
return_tensors=return_tensors,
|
469 |
-
verbose=verbose,
|
470 |
-
)
|
471 |
-
|
472 |
-
return BatchEncoding(batch_outputs)
|
473 |
-
|
474 |
-
def decode(
|
475 |
-
self,
|
476 |
-
token_ids: Union[int, List[int]],
|
477 |
-
skip_special_tokens: bool = False,
|
478 |
-
clean_up_tokenization_spaces: bool = None,
|
479 |
-
**kwargs,
|
480 |
-
) -> str:
|
481 |
-
"""
|
482 |
-
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
|
483 |
-
tokens and clean up tokenization spaces.
|
484 |
-
|
485 |
-
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
|
486 |
-
|
487 |
-
Args:
|
488 |
-
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
|
489 |
-
List of tokenized input ids. Can be obtained using the `__call__` method.
|
490 |
-
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
491 |
-
Whether or not to remove special tokens in the decoding.
|
492 |
-
clean_up_tokenization_spaces (`bool`, *optional*):
|
493 |
-
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
494 |
-
`self.clean_up_tokenization_spaces`.
|
495 |
-
kwargs (additional keyword arguments, *optional*):
|
496 |
-
Will be passed to the underlying model specific decode method.
|
497 |
-
|
498 |
-
Returns:
|
499 |
-
`str`: The decoded sentence.
|
500 |
-
"""
|
501 |
-
# Convert inputs to python lists
|
502 |
-
return self._decode(
|
503 |
-
token_ids=token_ids,
|
504 |
-
skip_special_tokens=skip_special_tokens,
|
505 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
506 |
-
**kwargs,
|
507 |
-
)
|
508 |
-
|
509 |
-
def batch_decode(
|
510 |
-
self,
|
511 |
-
sequences: Union[List[int], List[List[int]]],
|
512 |
-
skip_special_tokens: bool = False,
|
513 |
-
clean_up_tokenization_spaces: bool = None,
|
514 |
-
**kwargs,
|
515 |
-
) -> List[str]:
|
516 |
-
"""
|
517 |
-
Convert a list of lists of token ids into a list of strings by calling decode.
|
518 |
-
|
519 |
-
Args:
|
520 |
-
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
|
521 |
-
List of tokenized input ids. Can be obtained using the `__call__` method.
|
522 |
-
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
523 |
-
Whether or not to remove special tokens in the decoding.
|
524 |
-
clean_up_tokenization_spaces (`bool`, *optional*):
|
525 |
-
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
526 |
-
`self.clean_up_tokenization_spaces`.
|
527 |
-
kwargs (additional keyword arguments, *optional*):
|
528 |
-
Will be passed to the underlying model specific decode method.
|
529 |
-
|
530 |
-
Returns:
|
531 |
-
`List[str]`: The list of decoded sentences.
|
532 |
-
"""
|
533 |
-
return [
|
534 |
-
self.decode(
|
535 |
-
seq,
|
536 |
-
skip_special_tokens=skip_special_tokens,
|
537 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
538 |
-
**kwargs,
|
539 |
-
)
|
540 |
-
for seq in sequences
|
541 |
-
]
|
542 |
-
|
543 |
-
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
|
544 |
-
input_ids = []
|
545 |
-
for is_user, text in conversation.iter_texts():
|
546 |
-
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
|
547 |
-
if len(input_ids) > self.model_max_length:
|
548 |
-
input_ids = input_ids[-self.model_max_length :]
|
549 |
-
return input_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|