Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1191.64 +/- 445.73
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df44d8f282b004739853a472b23b37a0bc23a6bad90e2d1788e22de39d8807d7
|
3 |
+
size 129192
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a30cc10e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a30cc1170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a30cc1200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a30cc1290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3a30cc1320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3a30cc13b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a30cc1440>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3a30cc14d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a30cc1560>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a30cc15f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a30cc1680>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3a30d18120>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1661535726.936669,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAxvYYP396n79/RZA9iHpjPz5/oT/TcVG/FeV+vn43xL5skpi8/tYWv1O4PLz7NiZAm+uBvqX1KL9uhOs+SGQOv6FCJj/W50W/uoM/vxEcJj9+bBo/WTdIPSzlij9P6cG/tQObv7KYxr/h1ew+ZeaJv9DDvD8qKGw+MEv+PmRMij/StBm/VpILvzgjUr+P57C/TMsMP8xbX7zume0+0fYzwKswA7/rsoc/Ts+2PkN3Fj9zm8i+qi3DP92mF79MJTjArkIpv2QuUTwH02g/hfPtP7UDm792/yQ/4dXsPmXmib+iJx8/eSddv1B7tj7VWjU/Z69FPI6KgT/yDdW+ymwavoWcBD8C4cC+eliQPjOYBD/UN/A9f2Gmv2r8zz4H8HK8gBsAP3xhmL+GCoS/BVHxPjtNMb5kP9E+x50vPz/0vL//YlM/spjGv+HV7D5l5om/mQOsut1P67+zuzu/ONCnPsc2uz/XFx8/Iut7vSP91b7+fg4/2HCdvTsiM79NVAI9gjNnPv0gvD+LsMo+rNN7PO2KPz7Hhg5AqaAvPs7WmL939Ty9sjgyPxarMj9qzI89tQObv3b/JD/h1ew+Gp9tP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAPn6izQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBwlrk8AAAAABPJ2r8AAAAApLv6PQAAAADQ7eA/AAAAAGG+JDsAAAAA+zb/PwAAAADZk789AAAAAFRn4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeFD42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6iCcvAAAAAB46f+/AAAAAIZdEzwAAAAAnhvjPwAAAAAmcIw9AAAAAAuZ8z8AAAAAJ7jXvAAAAADNw9y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfKLtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgADJRzwAAAAALyfovwAAAABV3168AAAAAKZ0+z8AAAAA3madvQAAAAAiNPs/AAAAADp6lT0AAAAAg3rpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIiBILYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICt+dK9AAAAAM/A4b8AAAAAApazvAAAAAAM++s/AAAAAD1Q5b0AAAAAClDxPwAAAADDKY09AAAAAPi+/78AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJjYAy8BdUuMAWyUTegDjAF0lEdApsjD1kDp1XV9lChoBkdAlcyT4xk/bGgHTegDaAhHQKbMNf7aZhN1fZQoaAZHQJxFagam4y5oB03oA2gIR0CmzxiqIacadX2UKGgGR0CXKZ0fozN2aAdN6ANoCEdAptC8h/y5JHV9lChoBkdAluJC/47A+WgHTegDaAhHQKbUtRwZOzp1fZQoaAZHQI0LZMpPRAtoB03oA2gIR0Cm2CoxxkupdX2UKGgGR0Cb7mNutOmBaAdN6ANoCEdAptsFeF+NLnV9lChoBkdAllm2/zreImgHTegDaAhHQKbcnWbwz+F1fZQoaAZHQJcvqSFGoaVoB03oA2gIR0Cm4JBAGB4EdX2UKGgGR0CXObpWFN+LaAdN6ANoCEdApuQA13t8eHV9lChoBkdAkYwSXMQmNWgHTegDaAhHQKbm4CvHLid1fZQoaAZHQJTLp/b0voNoB03oA2gIR0Cm6IFHrhR7dX2UKGgGR0CTS2j5KvmpaAdN6ANoCEdApux3IwM6R3V9lChoBkdAkHhTuF6Av2gHTegDaAhHQKbv7HxSYPZ1fZQoaAZHQJCqKoxYaHdoB03oA2gIR0Cm8tVQhwERdX2UKGgGR0CSryfXf642aAdN6ANoCEdApvR1G0/nn3V9lChoBkdAlRyxdhRZU2gHTegDaAhHQKb4eU8mrsB1fZQoaAZHQJCP0V1wHZ9oB03oA2gIR0Cm/AArhBJJdX2UKGgGR0CCpGwFkhA4aAdN6ANoCEdApv7nNA1NxnV9lChoBkdAlLAU2xY7rGgHTegDaAhHQKcAg5Fw1ix1fZQoaAZHQJRf2GvfTCtoB03oA2gIR0CnBIcxTKkmdX2UKGgGR0CamipZfUnYaAdN6ANoCEdApwf+FnIyTXV9lChoBkdAmAOPk/8l5WgHTegDaAhHQKcK0BH09Qp1fZQoaAZHQI7QZx1gYxdoB03oA2gIR0CnDHidjG1hdX2UKGgGR0CbDtjCHh0haAdN6ANoCEdApxBmqFRHgHV9lChoBkdAmeRtipeeF2gHTegDaAhHQKcTyRQJokB1fZQoaAZHQJg/m/L1VYJoB03oA2gIR0CnFpf5ckdFdX2UKGgGR0CZO/8s+V1PaAdN6ANoCEdApxg0vCdjG3V9lChoBkdAmdh24iHIqGgHTegDaAhHQKccIQXAM2F1fZQoaAZHQJws97hNucdoB03oA2gIR0CnH5+On2qUdX2UKGgGR0CVUu6KLsKLaAdN6ANoCEdApyKD9AHE/HV9lChoBkdAlZJjqbBoEmgHTegDaAhHQKckIEzwc5t1fZQoaAZHQJbxfeBQN1BoB03oA2gIR0CnKB1KXfIkdX2UKGgGR0CPGPqXWvr4aAdN6ANoCEdApyucdcSoO3V9lChoBkdAkMZ96HCXQmgHTegDaAhHQKcufZ6D5CZ1fZQoaAZHQJuE9PYWcjJoB03oA2gIR0CnMBkTpPhydX2UKGgGR0CRrdQqI7/5aAdN6ANoCEdApzQTn/1g6XV9lChoBkdAkTePVy3kP2gHTegDaAhHQKc3foq0+kh1fZQoaAZHQJWE0X0oSctoB03oA2gIR0CnOlWuX/o8dX2UKGgGR0CQaSWjGkvcaAdN6ANoCEdApzvu/nGKh3V9lChoBkdAkisKab4Ju2gHTegDaAhHQKc/7Oj7AL11fZQoaAZHQJAnQuez2OBoB03oA2gIR0CnQ2Io3JgcdX2UKGgGR0CUztSBK+SKaAdN6ANoCEdAp0ZJNucc2nV9lChoBkdAizJsyad+X2gHTegDaAhHQKdH6SVW0Z51fZQoaAZHQI6yV16mfoRoB03oA2gIR0CnS+1og3cYdX2UKGgGR0CRDnmQbMouaAdN6ANoCEdAp09opBomHHV9lChoBkdAkaGDopx3mmgHTegDaAhHQKdSQdGRV6x1fZQoaAZHQJMD/cj7hvRoB03oA2gIR0CnU9iYCyQgdX2UKGgGR0CTKjXsw+MZaAdN6ANoCEdAp1fJjBl+VnV9lChoBkdAk314llbu+mgHTegDaAhHQKdbOl67dzp1fZQoaAZHQJaqDYe1a4doB03oA2gIR0CnXhRoqTbGdX2UKGgGR0CW+lISDh99aAdN6ANoCEdAp1+jxusLfHV9lChoBkdAlqrVVYISlGgHTegDaAhHQKdjnWXC0nh1fZQoaAZHQJjyT2K2rn1oB03oA2gIR0CnaEofjjrBdX2UKGgGR0CVlInTiKixaAdN6ANoCEdAp2sewzLwF3V9lChoBkdAmu8/dAPd22gHTegDaAhHQKdstGxUvPF1fZQoaAZHQJc/J4LThHdoB03oA2gIR0CncKXbEgnudX2UKGgGR0CYEn1VHWjHaAdN6ANoCEdAp3QJtHhCMXV9lChoBkdAlTQRoqTbFmgHTegDaAhHQKd25RtP5591fZQoaAZHQJZVklC1JDpoB03oA2gIR0CneIQuuievdX2UKGgGR0CTbdWRigCfaAdN6ANoCEdAp3x1+b3GoHV9lChoBkdAk2P7tAs052gHTegDaAhHQKd/5LDhtLt1fZQoaAZHQJAF/TmW+oNoB03oA2gIR0Cngr3d0q6OdX2UKGgGR0CVkCrOqvNeaAdN6ANoCEdAp4RZxm03O3V9lChoBkdAjvh8j7hvSGgHTegDaAhHQKeIZH5rP+p1fZQoaAZHQJFjkfA9FF5oB03oA2gIR0Cni9T7uUlidX2UKGgGR0CSaO9+gDigaAdN6ANoCEdAp46qvPkaM3V9lChoBkdAkXVqS9ugpWgHTegDaAhHQKeQRpVS4vx1fZQoaAZHQJFPmZb6guhoB03oA2gIR0CnlDTfJmuldX2UKGgGR0CT72lOXVslaAdN6ANoCEdAp5fCPS2H+XV9lChoBkdAi1/3t8eCCmgHTegDaAhHQKeapsjVx0d1fZQoaAZHQJSYWTlkpZxoB03oA2gIR0CnnECV0Lc9dX2UKGgGR0CSpSol2NedaAdN6ANoCEdAp6BLhYNiIHV9lChoBkdAl5TeSSvC/GgHTegDaAhHQKejxjOs1bd1fZQoaAZHQJNCXq/ub7VoB03oA2gIR0CnpqvHcUM5dX2UKGgGR0CV+uCCSRr8aAdN6ANoCEdAp6hT7di2D3V9lChoBkdAllCStA9mpWgHTegDaAhHQKesTS0jTrp1fZQoaAZHQJgh1TR6WxBoB03oA2gIR0Cnr7LkCFK1dX2UKGgGR0CY5MMJhOQAaAdN6ANoCEdAp7KQ5WBBiXV9lChoBkdAmGK+i35N5GgHTegDaAhHQKe0KOo5xR51fZQoaAZHQJeoGr/82rJoB03oA2gIR0CnuCI0IkZ8dX2UKGgGR0CWpW92ovSMaAdN6ANoCEdAp7uN9fCyhXV9lChoBkdAm+mXhKlHjWgHTegDaAhHQKe+YxcmjTN1fZQoaAZHQJzfriyY5T9oB03oA2gIR0Cnv/y0KJEZdX2UKGgGR0CbWnGiYb84aAdN6ANoCEdAp8PxQBPsRnV9lChoBkdAlgv18PWhAWgHTegDaAhHQKfHZ3K0UoN1fZQoaAZHQJWn451eSjhoB03oA2gIR0CnyjSjHn2adX2UKGgGR0CZZ6Jmdy1eaAdN6ANoCEdAp8vO3F1jiHV9lChoBkdAmal5JwsGxGgHTegDaAhHQKfPwCvHLid1fZQoaAZHQJgViRHPNV1oB03oA2gIR0Cn0yunMt9QdX2UKGgGR0CZAlljVhCuaAdN6ANoCEdAp9X2armyPnV9lChoBkdAmz/T3dsSCmgHTegDaAhHQKfXkXmeUY91fZQoaAZHQJtsbCrLhaVoB03oA2gIR0Cn233RXwLFdX2UKGgGR0Cc7x/336AOaAdN6ANoCEdAp97nWrfce3V9lChoBkdAmLxGNipeeGgHTegDaAhHQKfhvldTo+x1fZQoaAZHQJt5fY02tMhoB03oA2gIR0Cn41cWTHKfdX2UKGgGR0CfPYnDBMzuaAdN6ANoCEdAp+c7cZccEXV9lChoBkdAnmsZL26ClWgHTegDaAhHQKfqoaQ3gk11fZQoaAZHQJvvx52Qnx9oB03oA2gIR0Cn7XxtP558dX2UKGgGR0CYXsweeWfLaAdN6ANoCEdAp+8bKoybhHVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:688cda716e4c5d1aa0b6644850c9ede15820eaa304b1404b605b0eadd93bb7b6
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf9d3684728676d3a268024efef326f4680857caf4591d46f4d391fcbc6cb4bf
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a30cc10e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a30cc1170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a30cc1200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a30cc1290>", "_build": "<function ActorCriticPolicy._build at 0x7f3a30cc1320>", "forward": "<function ActorCriticPolicy.forward at 0x7f3a30cc13b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a30cc1440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3a30cc14d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a30cc1560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a30cc15f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a30cc1680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a30d18120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661535726.936669, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAxvYYP396n79/RZA9iHpjPz5/oT/TcVG/FeV+vn43xL5skpi8/tYWv1O4PLz7NiZAm+uBvqX1KL9uhOs+SGQOv6FCJj/W50W/uoM/vxEcJj9+bBo/WTdIPSzlij9P6cG/tQObv7KYxr/h1ew+ZeaJv9DDvD8qKGw+MEv+PmRMij/StBm/VpILvzgjUr+P57C/TMsMP8xbX7zume0+0fYzwKswA7/rsoc/Ts+2PkN3Fj9zm8i+qi3DP92mF79MJTjArkIpv2QuUTwH02g/hfPtP7UDm792/yQ/4dXsPmXmib+iJx8/eSddv1B7tj7VWjU/Z69FPI6KgT/yDdW+ymwavoWcBD8C4cC+eliQPjOYBD/UN/A9f2Gmv2r8zz4H8HK8gBsAP3xhmL+GCoS/BVHxPjtNMb5kP9E+x50vPz/0vL//YlM/spjGv+HV7D5l5om/mQOsut1P67+zuzu/ONCnPsc2uz/XFx8/Iut7vSP91b7+fg4/2HCdvTsiM79NVAI9gjNnPv0gvD+LsMo+rNN7PO2KPz7Hhg5AqaAvPs7WmL939Ty9sjgyPxarMj9qzI89tQObv3b/JD/h1ew+Gp9tP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAPn6izQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBwlrk8AAAAABPJ2r8AAAAApLv6PQAAAADQ7eA/AAAAAGG+JDsAAAAA+zb/PwAAAADZk789AAAAAFRn4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeFD42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6iCcvAAAAAB46f+/AAAAAIZdEzwAAAAAnhvjPwAAAAAmcIw9AAAAAAuZ8z8AAAAAJ7jXvAAAAADNw9y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfKLtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgADJRzwAAAAALyfovwAAAABV3168AAAAAKZ0+z8AAAAA3madvQAAAAAiNPs/AAAAADp6lT0AAAAAg3rpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIiBILYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICt+dK9AAAAAM/A4b8AAAAAApazvAAAAAAM++s/AAAAAD1Q5b0AAAAAClDxPwAAAADDKY09AAAAAPi+/78AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJjYAy8BdUuMAWyUTegDjAF0lEdApsjD1kDp1XV9lChoBkdAlcyT4xk/bGgHTegDaAhHQKbMNf7aZhN1fZQoaAZHQJxFagam4y5oB03oA2gIR0CmzxiqIacadX2UKGgGR0CXKZ0fozN2aAdN6ANoCEdAptC8h/y5JHV9lChoBkdAluJC/47A+WgHTegDaAhHQKbUtRwZOzp1fZQoaAZHQI0LZMpPRAtoB03oA2gIR0Cm2CoxxkupdX2UKGgGR0Cb7mNutOmBaAdN6ANoCEdAptsFeF+NLnV9lChoBkdAllm2/zreImgHTegDaAhHQKbcnWbwz+F1fZQoaAZHQJcvqSFGoaVoB03oA2gIR0Cm4JBAGB4EdX2UKGgGR0CXObpWFN+LaAdN6ANoCEdApuQA13t8eHV9lChoBkdAkYwSXMQmNWgHTegDaAhHQKbm4CvHLid1fZQoaAZHQJTLp/b0voNoB03oA2gIR0Cm6IFHrhR7dX2UKGgGR0CTS2j5KvmpaAdN6ANoCEdApux3IwM6R3V9lChoBkdAkHhTuF6Av2gHTegDaAhHQKbv7HxSYPZ1fZQoaAZHQJCqKoxYaHdoB03oA2gIR0Cm8tVQhwERdX2UKGgGR0CSryfXf642aAdN6ANoCEdApvR1G0/nn3V9lChoBkdAlRyxdhRZU2gHTegDaAhHQKb4eU8mrsB1fZQoaAZHQJCP0V1wHZ9oB03oA2gIR0Cm/AArhBJJdX2UKGgGR0CCpGwFkhA4aAdN6ANoCEdApv7nNA1NxnV9lChoBkdAlLAU2xY7rGgHTegDaAhHQKcAg5Fw1ix1fZQoaAZHQJRf2GvfTCtoB03oA2gIR0CnBIcxTKkmdX2UKGgGR0CamipZfUnYaAdN6ANoCEdApwf+FnIyTXV9lChoBkdAmAOPk/8l5WgHTegDaAhHQKcK0BH09Qp1fZQoaAZHQI7QZx1gYxdoB03oA2gIR0CnDHidjG1hdX2UKGgGR0CbDtjCHh0haAdN6ANoCEdApxBmqFRHgHV9lChoBkdAmeRtipeeF2gHTegDaAhHQKcTyRQJokB1fZQoaAZHQJg/m/L1VYJoB03oA2gIR0CnFpf5ckdFdX2UKGgGR0CZO/8s+V1PaAdN6ANoCEdApxg0vCdjG3V9lChoBkdAmdh24iHIqGgHTegDaAhHQKccIQXAM2F1fZQoaAZHQJws97hNucdoB03oA2gIR0CnH5+On2qUdX2UKGgGR0CVUu6KLsKLaAdN6ANoCEdApyKD9AHE/HV9lChoBkdAlZJjqbBoEmgHTegDaAhHQKckIEzwc5t1fZQoaAZHQJbxfeBQN1BoB03oA2gIR0CnKB1KXfIkdX2UKGgGR0CPGPqXWvr4aAdN6ANoCEdApyucdcSoO3V9lChoBkdAkMZ96HCXQmgHTegDaAhHQKcufZ6D5CZ1fZQoaAZHQJuE9PYWcjJoB03oA2gIR0CnMBkTpPhydX2UKGgGR0CRrdQqI7/5aAdN6ANoCEdApzQTn/1g6XV9lChoBkdAkTePVy3kP2gHTegDaAhHQKc3foq0+kh1fZQoaAZHQJWE0X0oSctoB03oA2gIR0CnOlWuX/o8dX2UKGgGR0CQaSWjGkvcaAdN6ANoCEdApzvu/nGKh3V9lChoBkdAkisKab4Ju2gHTegDaAhHQKc/7Oj7AL11fZQoaAZHQJAnQuez2OBoB03oA2gIR0CnQ2Io3JgcdX2UKGgGR0CUztSBK+SKaAdN6ANoCEdAp0ZJNucc2nV9lChoBkdAizJsyad+X2gHTegDaAhHQKdH6SVW0Z51fZQoaAZHQI6yV16mfoRoB03oA2gIR0CnS+1og3cYdX2UKGgGR0CRDnmQbMouaAdN6ANoCEdAp09opBomHHV9lChoBkdAkaGDopx3mmgHTegDaAhHQKdSQdGRV6x1fZQoaAZHQJMD/cj7hvRoB03oA2gIR0CnU9iYCyQgdX2UKGgGR0CTKjXsw+MZaAdN6ANoCEdAp1fJjBl+VnV9lChoBkdAk314llbu+mgHTegDaAhHQKdbOl67dzp1fZQoaAZHQJaqDYe1a4doB03oA2gIR0CnXhRoqTbGdX2UKGgGR0CW+lISDh99aAdN6ANoCEdAp1+jxusLfHV9lChoBkdAlqrVVYISlGgHTegDaAhHQKdjnWXC0nh1fZQoaAZHQJjyT2K2rn1oB03oA2gIR0CnaEofjjrBdX2UKGgGR0CVlInTiKixaAdN6ANoCEdAp2sewzLwF3V9lChoBkdAmu8/dAPd22gHTegDaAhHQKdstGxUvPF1fZQoaAZHQJc/J4LThHdoB03oA2gIR0CncKXbEgnudX2UKGgGR0CYEn1VHWjHaAdN6ANoCEdAp3QJtHhCMXV9lChoBkdAlTQRoqTbFmgHTegDaAhHQKd25RtP5591fZQoaAZHQJZVklC1JDpoB03oA2gIR0CneIQuuievdX2UKGgGR0CTbdWRigCfaAdN6ANoCEdAp3x1+b3GoHV9lChoBkdAk2P7tAs052gHTegDaAhHQKd/5LDhtLt1fZQoaAZHQJAF/TmW+oNoB03oA2gIR0Cngr3d0q6OdX2UKGgGR0CVkCrOqvNeaAdN6ANoCEdAp4RZxm03O3V9lChoBkdAjvh8j7hvSGgHTegDaAhHQKeIZH5rP+p1fZQoaAZHQJFjkfA9FF5oB03oA2gIR0Cni9T7uUlidX2UKGgGR0CSaO9+gDigaAdN6ANoCEdAp46qvPkaM3V9lChoBkdAkXVqS9ugpWgHTegDaAhHQKeQRpVS4vx1fZQoaAZHQJFPmZb6guhoB03oA2gIR0CnlDTfJmuldX2UKGgGR0CT72lOXVslaAdN6ANoCEdAp5fCPS2H+XV9lChoBkdAi1/3t8eCCmgHTegDaAhHQKeapsjVx0d1fZQoaAZHQJSYWTlkpZxoB03oA2gIR0CnnECV0Lc9dX2UKGgGR0CSpSol2NedaAdN6ANoCEdAp6BLhYNiIHV9lChoBkdAl5TeSSvC/GgHTegDaAhHQKejxjOs1bd1fZQoaAZHQJNCXq/ub7VoB03oA2gIR0CnpqvHcUM5dX2UKGgGR0CV+uCCSRr8aAdN6ANoCEdAp6hT7di2D3V9lChoBkdAllCStA9mpWgHTegDaAhHQKesTS0jTrp1fZQoaAZHQJgh1TR6WxBoB03oA2gIR0Cnr7LkCFK1dX2UKGgGR0CY5MMJhOQAaAdN6ANoCEdAp7KQ5WBBiXV9lChoBkdAmGK+i35N5GgHTegDaAhHQKe0KOo5xR51fZQoaAZHQJeoGr/82rJoB03oA2gIR0CnuCI0IkZ8dX2UKGgGR0CWpW92ovSMaAdN6ANoCEdAp7uN9fCyhXV9lChoBkdAm+mXhKlHjWgHTegDaAhHQKe+YxcmjTN1fZQoaAZHQJzfriyY5T9oB03oA2gIR0Cnv/y0KJEZdX2UKGgGR0CbWnGiYb84aAdN6ANoCEdAp8PxQBPsRnV9lChoBkdAlgv18PWhAWgHTegDaAhHQKfHZ3K0UoN1fZQoaAZHQJWn451eSjhoB03oA2gIR0CnyjSjHn2adX2UKGgGR0CZZ6Jmdy1eaAdN6ANoCEdAp8vO3F1jiHV9lChoBkdAmal5JwsGxGgHTegDaAhHQKfPwCvHLid1fZQoaAZHQJgViRHPNV1oB03oA2gIR0Cn0yunMt9QdX2UKGgGR0CZAlljVhCuaAdN6ANoCEdAp9X2armyPnV9lChoBkdAmz/T3dsSCmgHTegDaAhHQKfXkXmeUY91fZQoaAZHQJtsbCrLhaVoB03oA2gIR0Cn233RXwLFdX2UKGgGR0Cc7x/336AOaAdN6ANoCEdAp97nWrfce3V9lChoBkdAmLxGNipeeGgHTegDaAhHQKfhvldTo+x1fZQoaAZHQJt5fY02tMhoB03oA2gIR0Cn41cWTHKfdX2UKGgGR0CfPYnDBMzuaAdN6ANoCEdAp+c7cZccEXV9lChoBkdAnmsZL26ClWgHTegDaAhHQKfqoaQ3gk11fZQoaAZHQJvvx52Qnx9oB03oA2gIR0Cn7XxtP558dX2UKGgGR0CYXsweeWfLaAdN6ANoCEdAp+8bKoybhHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c11d6f5aed52ab2af3ebdb5a50cff07409a7f320010ea92c197cc55c662b88a
|
3 |
+
size 1097714
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1191.6386959891825, "std_reward": 445.7288185577502, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-26T18:58:01.909351"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa83e0531e48bfdea24bf811a4ca2c359aff4e943c26b5b803f73513ba8be12a
|
3 |
+
size 2763
|