RamAnanth1 commited on
Commit
78d4043
1 Parent(s): d7a9ffd

Upload PPO LunarLander-v2 trained agent for 2M steps

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 257.03 +/- 28.53
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 259.01 +/- 18.13
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f93435a0050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f93435a00e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f93435a0170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f93435a0200>", "_build": "<function ActorCriticPolicy._build at 0x7f93435a0290>", "forward": "<function ActorCriticPolicy.forward at 0x7f93435a0320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f93435a03b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f93435a0440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f93435a04d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f93435a0560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f93435a05f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f93435e96c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665335615754198837, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq1mj1qv6Y/EQqtPt3l/b7upyA+7bNRPgAAAAAAAAAAs1V7PUgHg7r0f6ezacF4r9iQszouHLwzAACAPwAAgD9N7LM90BwYP8BhQ72O77O+XzqgPJBSIr0AAAAAAAAAAE1bXD0U7qa4WJt9OREXPDJ1gRG8ApeZuAAAgD8AAIA/U8IxPt+QxT5DF+q+U/y4vicTs73b0oO+AAAAAAAAAAAzs8q7Et9qP95Uz71p5QC/DvJcvMapVzwAAAAAAAAAAE0LYz1Hgh8/u4aAvFCRwr7LIX48QxQBvQAAAAAAAAAAzU2kPQP7BT12iAs929gYvuQ3vDwKo6A8AAAAAAAAAAD6GUY+qrSXP+fHrD61Cxu/fK7CPmAR0z0AAAAAAAAAAIBKRD2JHDU+fb89PcJAj751OoS8Hg43PQAAAAAAAAAA5ukYvYqyND5VLH4+3Qw5vtAfoT3KsBI8AAAAAAAAAAAAuuU8ntmiP7r33D2UYhO/MuCwPWz/DT0AAAAAAAAAAAAQU7s0jLA/InvQvRKM/b7lpPk64wJLvAAAAAAAAAAAMysXOwX6qbvWR8E71mElPKhnBD2yRRG9AACAPwAAgD+akEQ+EYcTP+trQb5JzsO+GZ6kPaJXhL4AAAAAAAAAACaxrj3yh34+XcWCvrSBmL7+6YS+upEcPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVURAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItW6D2i/ackCUhpRSlIwBbJRNPAGMAXSUR0CfnVh37k4ndX2UKGgGaAloD0MIQURq2oXicECUhpRSlGgVS+9oFkdAn54tR3u/lHV9lChoBmgJaA9DCJq1FJB2Xm5AlIaUUpRoFUvxaBZHQJ+eSDtgKF91fZQoaAZoCWgPQwjtZdtpa/RzQJSGlFKUaBVL1WgWR0CfnojY7JXAdX2UKGgGaAloD0MI1VxuMFQPc0CUhpRSlGgVTRUBaBZHQJ+erUVi4KB1fZQoaAZoCWgPQwhW0opvqB5zQJSGlFKUaBVNGgFoFkdAn5/EvoNd7nV9lChoBmgJaA9DCNczhGPWv3BAlIaUUpRoFU0MAWgWR0CfoEgg5imVdX2UKGgGaAloD0MIQEtXsI1bbUCUhpRSlGgVTQMBaBZHQJ+iGuzQeFN1fZQoaAZoCWgPQwjba0HvjSVzQJSGlFKUaBVNgAFoFkdAn6JV8w5/9nV9lChoBmgJaA9DCK2lgLR/v3JAlIaUUpRoFU0lAWgWR0Cfopbah6BzdX2UKGgGaAloD0MImG2nrdH5cECUhpRSlGgVTRUBaBZHQJ+i/DWK/Eh1fZQoaAZoCWgPQwhMa9PYXnBwQJSGlFKUaBVNEAFoFkdAn6NJu63AmHV9lChoBmgJaA9DCCJUqdnD2nBAlIaUUpRoFUvnaBZHQJ+jbLmp2ll1fZQoaAZoCWgPQwh0J9h/HRBzQJSGlFKUaBVL5WgWR0Cfo9B7u2JBdX2UKGgGaAloD0MIEOfhBGavcUCUhpRSlGgVTREBaBZHQJ+j+FqSHM51fZQoaAZoCWgPQwgqkUQvo1BxQJSGlFKUaBVNJQFoFkdAn6T1gx8D0XV9lChoBmgJaA9DCDCgF+5cC29AlIaUUpRoFU0rAWgWR0CfpSk9U0emdX2UKGgGaAloD0MI1BBV+LN0ckCUhpRSlGgVS/loFkdAn6VCFfzBh3V9lChoBmgJaA9DCMO68e4IEXNAlIaUUpRoFU0FAWgWR0CfpXdUKiPAdX2UKGgGaAloD0MIi8HDtG+8ckCUhpRSlGgVTQkBaBZHQJ+mBmwqy4Z1fZQoaAZoCWgPQwhzLVqA9iByQJSGlFKUaBVNFwFoFkdAn6Y+EqUeMnV9lChoBmgJaA9DCGMOgo6W1XJAlIaUUpRoFUvXaBZHQJ+mVEofCAN1fZQoaAZoCWgPQwgJ+3YSEc5wQJSGlFKUaBVNAQFoFkdAn6bmi+L3sXV9lChoBmgJaA9DCDZy3ZRy925AlIaUUpRoFUvpaBZHQJ+odP69CeF1fZQoaAZoCWgPQwiNJayNsaZwQJSGlFKUaBVL62gWR0CfqPyYoiLVdX2UKGgGaAloD0MI0Oy6t2IqcUCUhpRSlGgVS/poFkdAn6k1BIFvAHV9lChoBmgJaA9DCPsHkQy513BAlIaUUpRoFUv0aBZHQJ+pnmr8zhx1fZQoaAZoCWgPQwhlic4yy71xQJSGlFKUaBVL7WgWR0Cfqkt7a7EpdX2UKGgGaAloD0MI8KfGSzddc0CUhpRSlGgVS/xoFkdAn6pMsQNCq3V9lChoBmgJaA9DCDvgumLGB25AlIaUUpRoFU0eAWgWR0CfqypXZGrkdX2UKGgGaAloD0MI7unqjgWMc0CUhpRSlGgVTRABaBZHQJ+rhG8VYZF1fZQoaAZoCWgPQwiCUx9I3u1wQJSGlFKUaBVL6mgWR0Cfq78Djin6dX2UKGgGaAloD0MI5xvRPWvebkCUhpRSlGgVTQMBaBZHQJ+sJ79hqj91fZQoaAZoCWgPQwgDCYof4xlyQJSGlFKUaBVL/mgWR0CfrDcNpdrwdX2UKGgGaAloD0MIiZro81Hhb0CUhpRSlGgVTQYBaBZHQJ+sx7IDHOt1fZQoaAZoCWgPQwj93NCUnXVwQJSGlFKUaBVL+WgWR0CfrRGATZg5dX2UKGgGaAloD0MIRbx1/q2scUCUhpRSlGgVS/1oFkdAn61rfUF0P3V9lChoBmgJaA9DCL8Qct6/qHFAlIaUUpRoFUv9aBZHQJ+thNdqtYB1fZQoaAZoCWgPQwjXGHRC6KFxQJSGlFKUaBVNBAFoFkdAn64+jRD1G3V9lChoBmgJaA9DCJM4K6ImynJAlIaUUpRoFUvyaBZHQJ/C+yfL9uR1fZQoaAZoCWgPQwisqSwKe+VwQJSGlFKUaBVL4mgWR0CfwwDaoMrmdX2UKGgGaAloD0MIT+eKUoKDcECUhpRSlGgVS/xoFkdAn8RbrLQokXV9lChoBmgJaA9DCHSZmgQvzHBAlIaUUpRoFU0RAWgWR0CfxJVXmvGIdX2UKGgGaAloD0MIs7eU8wWBc0CUhpRSlGgVS/JoFkdAn8TBzJZGKHV9lChoBmgJaA9DCECKOnPPEnFAlIaUUpRoFUvhaBZHQJ/FGMxXXAd1fZQoaAZoCWgPQwjzxklhHvlyQJSGlFKUaBVL4GgWR0CfxWIfbKzSdX2UKGgGaAloD0MINjtSfeeJcECUhpRSlGgVS+FoFkdAn8dGTxG2C3V9lChoBmgJaA9DCHlZEwt8sGtAlIaUUpRoFU0QAWgWR0Cfx1CaJAMVdX2UKGgGaAloD0MIXaW762zXcECUhpRSlGgVTQIBaBZHQJ/HYjrzGxV1fZQoaAZoCWgPQwgW9rTDX61tQJSGlFKUaBVL+GgWR0Cfx7ibUgB+dX2UKGgGaAloD0MIrAMg7mr2cUCUhpRSlGgVTSQBaBZHQJ/IYYO2AoZ1fZQoaAZoCWgPQwjQJodPuspwQJSGlFKUaBVL+2gWR0CfyIE7W/ahdX2UKGgGaAloD0MIQ8cOKnEZc0CUhpRSlGgVTRoBaBZHQJ/JfXe3x4J1fZQoaAZoCWgPQwjPZtXn6sFsQJSGlFKUaBVNCwFoFkdAn8ns495hSnV9lChoBmgJaA9DCGB4JckzhnNAlIaUUpRoFUv/aBZHQJ/KyMDOkcl1fZQoaAZoCWgPQwhIh4cw/iFvQJSGlFKUaBVNBgFoFkdAn8sHWBjFynV9lChoBmgJaA9DCNFa0ea4ZHFAlIaUUpRoFUvdaBZHQJ/MAtYjjaR1fZQoaAZoCWgPQwiTcCGP4GtxQJSGlFKUaBVNDgFoFkdAn80Wwu/UOXV9lChoBmgJaA9DCE4MyclE1nFAlIaUUpRoFU0RAWgWR0CfzWPuG9HudX2UKGgGaAloD0MIvXK9bWb8ckCUhpRSlGgVTQABaBZHQJ/Nlo/Rmbt1fZQoaAZoCWgPQwgHI/YJ4KVxQJSGlFKUaBVNLQFoFkdAn83jMRpUP3V9lChoBmgJaA9DCGiWBKjpOHJAlIaUUpRoFUvgaBZHQJ/OWD8Lrop1fZQoaAZoCWgPQwhYVS+/E/BxQJSGlFKUaBVL32gWR0Cfzq8fms/6dX2UKGgGaAloD0MI6X+5Fm2RcUCUhpRSlGgVS+FoFkdAn89qbSZ0CHV9lChoBmgJaA9DCCAqjZgZTXJAlIaUUpRoFU0WAWgWR0Cf0B3Gn4widX2UKGgGaAloD0MIA9L+BxgzcUCUhpRSlGgVTR0BaBZHQJ/QP7Hhjvx1fZQoaAZoCWgPQwhNaJJYErpxQJSGlFKUaBVL+2gWR0Cf0GMRHww1dX2UKGgGaAloD0MIfa62Yr9lckCUhpRSlGgVS/poFkdAn9FWQr+YMXV9lChoBmgJaA9DCGZrfZHQv3BAlIaUUpRoFUvYaBZHQJ/RkiILw4N1fZQoaAZoCWgPQwi13QTfNKtuQJSGlFKUaBVL4GgWR0Cf0gV4X40udX2UKGgGaAloD0MIvJaQD3pscECUhpRSlGgVTRcBaBZHQJ/SlW2gFot1fZQoaAZoCWgPQwgqOLwgYjVxQJSGlFKUaBVL4mgWR0Cf0vdbPhQ4dX2UKGgGaAloD0MIgJwwYbTHckCUhpRSlGgVTQMBaBZHQJ/VCYE4ecR1fZQoaAZoCWgPQwiEglK0clxvQJSGlFKUaBVNAAFoFkdAn9VAUg0TDnV9lChoBmgJaA9DCET4F0Gj6XBAlIaUUpRoFU0JAWgWR0Cf1cFrl/6PdX2UKGgGaAloD0MI8KZbdggsbUCUhpRSlGgVS/ZoFkdAn9XtKIznBHV9lChoBmgJaA9DCFO0ci8wlHBAlIaUUpRoFU0QAWgWR0Cf1zTINmUXdX2UKGgGaAloD0MIwtzu5b5kcUCUhpRSlGgVTQABaBZHQJ/XfdM0xdp1fZQoaAZoCWgPQwhLr83GCmFxQJSGlFKUaBVNRQFoFkdAn9gyYb83uXV9lChoBmgJaA9DCFTJAFDFcHFAlIaUUpRoFUv1aBZHQJ/YMuL74zt1fZQoaAZoCWgPQwhgOUIGMk5xQJSGlFKUaBVNCgFoFkdAn9ix4Y77sXV9lChoBmgJaA9DCDKSPUKN03BAlIaUUpRoFU0SAWgWR0Cf2NBC2MKkdX2UKGgGaAloD0MIaJJYUq4scECUhpRSlGgVS+JoFkdAn9jnVf/m1nV9lChoBmgJaA9DCOUmamnuYHJAlIaUUpRoFU0AAWgWR0Cf2Xz/p+tsdX2UKGgGaAloD0MId/NUh1yDbkCUhpRSlGgVS+xoFkdAn9mYxUNrkHV9lChoBmgJaA9DCJeL+E4Mb3FAlIaUUpRoFU0KAWgWR0Cf2wL6DXe4dX2UKGgGaAloD0MIVOI6xpURc0CUhpRSlGgVTQIBaBZHQJ/bK8BdUsF1fZQoaAZoCWgPQwiaJJaUu2BZQJSGlFKUaBVN6ANoFkdAn9xvPw/gSHV9lChoBmgJaA9DCGb6JeKtnW9AlIaUUpRoFUv0aBZHQJ/ctKXfIjp1fZQoaAZoCWgPQwhFgxQ8hSpwQJSGlFKUaBVL+WgWR0Cf3XbaAWi2dX2UKGgGaAloD0MIILWJkzsbcECUhpRSlGgVS/poFkdAn92lmOEM9nV9lChoBmgJaA9DCG+9pgdF83BAlIaUUpRoFUvpaBZHQJ/eObe/Ho51fZQoaAZoCWgPQwjn/upxX7RvQJSGlFKUaBVNNAFoFkdAn97E5IYm9nV9lChoBmgJaA9DCPmGwmdrs3BAlIaUUpRoFUv0aBZHQJ/ezAoG6f91fZQoaAZoCWgPQwj6DRMN0g9xQJSGlFKUaBVL7GgWR0Cf3yHUMG5ddX2UKGgGaAloD0MI11HVBNFBbkCUhpRSlGgVTQYBaBZHQJ/f2Ymb9ZR1fZQoaAZoCWgPQwibAMPyp1BxQJSGlFKUaBVNAAFoFkdAn+BHL7oB73V9lChoBmgJaA9DCOF6FK4HBHBAlIaUUpRoFUvxaBZHQJ/gqxD9fkZ1fZQoaAZoCWgPQwglkX2QpQJzQJSGlFKUaBVNEQFoFkdAn+DYQSSNfnV9lChoBmgJaA9DCJLLf0h/UHFAlIaUUpRoFU0NAWgWR0Cf4VHy3CsPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.1", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f93435a0050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f93435a00e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f93435a0170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f93435a0200>", "_build": "<function ActorCriticPolicy._build at 0x7f93435a0290>", "forward": "<function ActorCriticPolicy.forward at 0x7f93435a0320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f93435a03b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f93435a0440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f93435a04d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f93435a0560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f93435a05f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f93435e96c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665336109988157861, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC8bL0ff9K7oG5yPVyzJD2S/Tq9wE8HPgAAgD8AAIA/ACi6PHcGFz6H08I9ZxGMvg01qD20ULg7AAAAAAAAAADmrQ49SAuduq3GRDlzP0s0bmKnOlbQYrgAAIA/AACAPzMHiDxcaz26dD1IPEHnJ7bEdIM6JvQntQAAgD8AAIA/MzfEvDb6KbyCFjs8hDwSPNCoi71ujfw8AACAPwAAgD9mgVY+vPyiPjBvDL8FIMm+Dp1aPvLhj74AAAAAAAAAAOaMhb0yTrc/nvZTvrPCn75DpEy7OmMPvgAAAAAAAAAAZqrDvb5ZpT32NYE+6bKAvj+0AjzI0Og8AAAAAAAAAACN/I89EvApPk1o573GcVO+JBDKvLYlpL0AAAAAAAAAAJo42zwrg7A/gRsFPwCorL7Xsja8K5nVPAAAAAAAAAAAmuUPPcGoAT7tosY9hlJWvm99xzyvwQk9AAAAAAAAAACa6aI97jRpP6pqRz0yWxK/Bay9PTSEIL0AAAAAAAAAANp9hL2BBYc+C5FMPlq7m75P3lc8M78FPQAAAAAAAAAAmsHBu74cuj8eHoi9snrZPck53DsNtXM8AAAAAAAAAACNrbc9NfyWP5AmwT4cLiq/xVIiPn0z6j0AAAAAAAAAAE0xqL0sPJc+2V+EPmZFr77n9WQ92hufuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIseB+wIPxb0CUhpRSlIwBbJRL/owBdJRHQKNv6WUKRdR1fZQoaAZoCWgPQwiLVBhbSJlwQJSGlFKUaBVL4GgWR0Cjb+2JrLyMdX2UKGgGaAloD0MIJZASuzaXcUCUhpRSlGgVTRcBaBZHQKNwTkhA4XJ1fZQoaAZoCWgPQwhcHJWbqEtGQJSGlFKUaBVLkmgWR0CjcFFQ2uPndX2UKGgGaAloD0MIjIS2nEv4cUCUhpRSlGgVTasBaBZHQKNwiaa1Cw91fZQoaAZoCWgPQwjnqnmOyOVwQJSGlFKUaBVL0WgWR0CjcPLa/RE4dX2UKGgGaAloD0MIYyZRL3iib0CUhpRSlGgVS+NoFkdAo3DzF4s3AHV9lChoBmgJaA9DCCy2SUWjJnJAlIaUUpRoFUvWaBZHQKNw/l0YCQt1fZQoaAZoCWgPQwhJS+XtCCVsQJSGlFKUaBVL3WgWR0CjcQ+xW1c/dX2UKGgGaAloD0MI7iO3Jt3oQUCUhpRSlGgVS45oFkdAo3EhLIxQBXV9lChoBmgJaA9DCMIWu32WF3BAlIaUUpRoFUvUaBZHQKNyOZXMhX91fZQoaAZoCWgPQwj8bU+QWGduQJSGlFKUaBVL3mgWR0Cjcmy2H+IedX2UKGgGaAloD0MIZhAf2HFgckCUhpRSlGgVS+toFkdAo3KVLamGd3V9lChoBmgJaA9DCB7EzhQ6FnBAlIaUUpRoFUvzaBZHQKNytq4YrJ91fZQoaAZoCWgPQwjoaiv2l9NvQJSGlFKUaBVL4WgWR0CjcufO2RaHdX2UKGgGaAloD0MIecvVjw1ccECUhpRSlGgVS+1oFkdAo3L7W7OE/XV9lChoBmgJaA9DCOHQWzx8X3JAlIaUUpRoFUvxaBZHQKNzKRsdkrh1fZQoaAZoCWgPQwiH3uLhPQdwQJSGlFKUaBVL4GgWR0Cjc1hScbzcdX2UKGgGaAloD0MIuCBblm8Ec0CUhpRSlGgVS+RoFkdAo3NpFNL13HV9lChoBmgJaA9DCPEPW3p0EHJAlIaUUpRoFUvhaBZHQKN0QraM72d1fZQoaAZoCWgPQwhgP8QGSz9zQJSGlFKUaBVNDwFoFkdAo3RQEMb3oXV9lChoBmgJaA9DCBeBsb6Bq3NAlIaUUpRoFUvvaBZHQKN0VxjriVB1fZQoaAZoCWgPQwi+F1+0R11yQJSGlFKUaBVL+2gWR0CjdIBCdBjXdX2UKGgGaAloD0MIxF4oYDuYcUCUhpRSlGgVTRMBaBZHQKN1DR51Ng11fZQoaAZoCWgPQwi8kXnkD5VwQJSGlFKUaBVNNwFoFkdAo3VkEJSiunV9lChoBmgJaA9DCO3xQjo8lW5AlIaUUpRoFUvlaBZHQKN1wNc4YJp1fZQoaAZoCWgPQwh56LtbmYRyQJSGlFKUaBVL0mgWR0CjdcV5jYqYdX2UKGgGaAloD0MIC+9yEd8fckCUhpRSlGgVS9BoFkdAo3YD7TDwY3V9lChoBmgJaA9DCMNGWb+ZI3FAlIaUUpRoFUvsaBZHQKN2CIldC3R1fZQoaAZoCWgPQwhbQGg9/GptQJSGlFKUaBVL+2gWR0CjdpTcRDkVdX2UKGgGaAloD0MIOWOYE7RGcUCUhpRSlGgVS+JoFkdAo3ao2fkFOnV9lChoBmgJaA9DCJhNgGE5Q3FAlIaUUpRoFUv0aBZHQKOAs4cWCVd1fZQoaAZoCWgPQwip2m6CL8pwQJSGlFKUaBVNBwFoFkdAo4C4acZtN3V9lChoBmgJaA9DCD9ya9ItEnJAlIaUUpRoFUvMaBZHQKOBABtk4FR1fZQoaAZoCWgPQwh2/u2y30FyQJSGlFKUaBVL32gWR0CjgTMHjZL7dX2UKGgGaAloD0MInZ0MjpL4cUCUhpRSlGgVS+doFkdAo4FX0oScsnV9lChoBmgJaA9DCEeNCTEX225AlIaUUpRoFUvcaBZHQKOBYH58BuJ1fZQoaAZoCWgPQwhhi90+a7txQJSGlFKUaBVL3mgWR0CjgfFl9SdfdX2UKGgGaAloD0MIXMtkOB7abkCUhpRSlGgVS9JoFkdAo4Ig9LYf4nV9lChoBmgJaA9DCB9lxAVgk3FAlIaUUpRoFUvpaBZHQKOC2DM/yG11fZQoaAZoCWgPQwi13QTftDVuQJSGlFKUaBVL42gWR0Cjgwds7+1jdX2UKGgGaAloD0MIY1+y8eDycECUhpRSlGgVS+NoFkdAo4MMGeMAFXV9lChoBmgJaA9DCDRKl/7lkHFAlIaUUpRoFUv+aBZHQKODNGXokiV1fZQoaAZoCWgPQwi1N/jCZCNwQJSGlFKUaBVL5WgWR0Cjg6V/DtPYdX2UKGgGaAloD0MIN/sD5fbBcUCUhpRSlGgVS+FoFkdAo4QEHWz4UXV9lChoBmgJaA9DCKqAe54/xHFAlIaUUpRoFUv/aBZHQKOEIJUHY6J1fZQoaAZoCWgPQwinrRHBOFBvQJSGlFKUaBVL6WgWR0CjhCO9FnZkdX2UKGgGaAloD0MIj8ahfpcEdECUhpRSlGgVS/loFkdAo4StcyFfzHV9lChoBmgJaA9DCFTIlXoWGHBAlIaUUpRoFUvdaBZHQKOErat9x6x1fZQoaAZoCWgPQwg7cw8JXyduQJSGlFKUaBVL72gWR0CjhLy8BdUsdX2UKGgGaAloD0MIf03WqEeccECUhpRSlGgVS+RoFkdAo4S89SuQqHV9lChoBmgJaA9DCNOjqZ6MknBAlIaUUpRoFUvTaBZHQKOFGjeKsMl1fZQoaAZoCWgPQwjbMuAspaZwQJSGlFKUaBVNeAJoFkdAo4UojB2wFHV9lChoBmgJaA9DCHqqQ26GdXJAlIaUUpRoFU0KAWgWR0CjhgdHMEA6dX2UKGgGaAloD0MIqmVrfVG9ckCUhpRSlGgVS9FoFkdAo4YLfBN21XV9lChoBmgJaA9DCMmwijeyInJAlIaUUpRoFUvmaBZHQKOGYClrM1V1fZQoaAZoCWgPQwgv3o/br9xzQJSGlFKUaBVL9mgWR0Cjhm5cLSeAdX2UKGgGaAloD0MIgbG+gQltcUCUhpRSlGgVS/hoFkdAo4bAqPOpsHV9lChoBmgJaA9DCG1Zvi7D+nFAlIaUUpRoFUvFaBZHQKOG4gB91EF1fZQoaAZoCWgPQwh7+gj84R1zQJSGlFKUaBVLy2gWR0Cjhvr5ZbIMdX2UKGgGaAloD0MIHqUSntALXkCUhpRSlGgVTegDaBZHQKOHJEMspXp1fZQoaAZoCWgPQwjI7236s2RyQJSGlFKUaBVNAQFoFkdAo4dKmTC+DnV9lChoBmgJaA9DCOknnN0aUnNAlIaUUpRoFU0BAWgWR0Cjh50mlZX/dX2UKGgGaAloD0MI7bq3InGPcECUhpRSlGgVS+FoFkdAo4fYgRsdk3V9lChoBmgJaA9DCGdEaW/wInNAlIaUUpRoFUvlaBZHQKOH17di2Dx1fZQoaAZoCWgPQwjjFvNzww9yQJSGlFKUaBVL8GgWR0Cjh/pGOMl1dX2UKGgGaAloD0MIpwTEJBwqc0CUhpRSlGgVTRUBaBZHQKOIiTNdJJ51fZQoaAZoCWgPQwifkJ23sb1uQJSGlFKUaBVL/mgWR0CjiJoHkcS5dX2UKGgGaAloD0MIBAMIH8oZckCUhpRSlGgVTQgBaBZHQKOIx93KSxJ1fZQoaAZoCWgPQwja4hqfSWJxQJSGlFKUaBVL1mgWR0CjiO8Empl0dX2UKGgGaAloD0MI529CIYIIc0CUhpRSlGgVS95oFkdAo4kFG5MDfXV9lChoBmgJaA9DCDfg88MIV3JAlIaUUpRoFUvMaBZHQKOJE52hZhd1fZQoaAZoCWgPQwj44ov2+JxxQJSGlFKUaBVL0WgWR0CjiZ047zTXdX2UKGgGaAloD0MIzR39L9fnbkCUhpRSlGgVS9toFkdAo4mhQDV6NXV9lChoBmgJaA9DCKa3PxcNEU1AlIaUUpRoFUuUaBZHQKOJvrtVrAR1fZQoaAZoCWgPQwindLD+T+dsQJSGlFKUaBVL1WgWR0Cjieb1RLsbdX2UKGgGaAloD0MIXmbYKGticUCUhpRSlGgVS/hoFkdAo4o8waisXHV9lChoBmgJaA9DCFrW/WNhknFAlIaUUpRoFU0hAWgWR0CjikGbb1yvdX2UKGgGaAloD0MIYW73cp+9cECUhpRSlGgVS9doFkdAo4qkBOpKjHV9lChoBmgJaA9DCHQNMzQeanFAlIaUUpRoFUvxaBZHQKOKwn6VMVV1fZQoaAZoCWgPQwhRS3MrRJ5wQJSGlFKUaBVNGgFoFkdAo4r1dmg8KXV9lChoBmgJaA9DCP29FB501HJAlIaUUpRoFUvlaBZHQKOK9aRISUV1fZQoaAZoCWgPQwiqSIWxBSVzQJSGlFKUaBVL3GgWR0Cji2lAVwgldX2UKGgGaAloD0MI4xk09A+SckCUhpRSlGgVS/hoFkdAo4u4UDdP+HV9lChoBmgJaA9DCJEpH4JqgXBAlIaUUpRoFUvcaBZHQKOLxj5Kvmp1fZQoaAZoCWgPQwgBF2TL8mNyQJSGlFKUaBVL32gWR0Cji+e3Ytg8dX2UKGgGaAloD0MIm6+Sjx2rckCUhpRSlGgVS/loFkdAo4v6ohpxm3V9lChoBmgJaA9DCJEpH4KqkW5AlIaUUpRoFUvnaBZHQKOMD+vQnhN1fZQoaAZoCWgPQwjMm8O1Gl1wQJSGlFKUaBVL1WgWR0CjjF1V5rxidX2UKGgGaAloD0MIyNCxgwq+cECUhpRSlGgVS9loFkdAo4yv0PH1e3V9lChoBmgJaA9DCFtAaD181HBAlIaUUpRoFUvwaBZHQKOMs4iosI51fZQoaAZoCWgPQwg66BIOPZ1uQJSGlFKUaBVL5mgWR0CjjLOKO1fFdX2UKGgGaAloD0MIb59VZkq0UkCUhpRSlGgVS6doFkdAo4y/lKbrknV9lChoBmgJaA9DCBnkLsLUVXFAlIaUUpRoFUvgaBZHQKONBLCemN11fZQoaAZoCWgPQwiQ2Vn0zvhyQJSGlFKUaBVL72gWR0CjjTZ5zHS4dX2UKGgGaAloD0MIQ4zXvGrAcUCUhpRSlGgVS9loFkdAo42ZjFyaNXV9lChoBmgJaA9DCEwbDkvD4HFAlIaUUpRoFU0FAWgWR0CjjfcdPtUodX2UKGgGaAloD0MI7WKa6d6ocUCUhpRSlGgVS/poFkdAo44G+dsi0XV9lChoBmgJaA9DCDyjrUqicHFAlIaUUpRoFUvHaBZHQKOOMRLbpNd1fZQoaAZoCWgPQwhC6nb2lYdyQJSGlFKUaBVL5mgWR0CjjkGetjkNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.1", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:254292f9e65e211042f87bfe30ab57b3efb2483f582f04bcc96a3959bdbb7eca
3
- size 147090
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ae98047ab742b38132394ea538268252820b7a7b0d5e28b41db35fdd9beb4fa
3
+ size 147042
ppo-LunarLander-v2/data CHANGED
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1665335615754198837,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq1mj1qv6Y/EQqtPt3l/b7upyA+7bNRPgAAAAAAAAAAs1V7PUgHg7r0f6ezacF4r9iQszouHLwzAACAPwAAgD9N7LM90BwYP8BhQ72O77O+XzqgPJBSIr0AAAAAAAAAAE1bXD0U7qa4WJt9OREXPDJ1gRG8ApeZuAAAgD8AAIA/U8IxPt+QxT5DF+q+U/y4vicTs73b0oO+AAAAAAAAAAAzs8q7Et9qP95Uz71p5QC/DvJcvMapVzwAAAAAAAAAAE0LYz1Hgh8/u4aAvFCRwr7LIX48QxQBvQAAAAAAAAAAzU2kPQP7BT12iAs929gYvuQ3vDwKo6A8AAAAAAAAAAD6GUY+qrSXP+fHrD61Cxu/fK7CPmAR0z0AAAAAAAAAAIBKRD2JHDU+fb89PcJAj751OoS8Hg43PQAAAAAAAAAA5ukYvYqyND5VLH4+3Qw5vtAfoT3KsBI8AAAAAAAAAAAAuuU8ntmiP7r33D2UYhO/MuCwPWz/DT0AAAAAAAAAAAAQU7s0jLA/InvQvRKM/b7lpPk64wJLvAAAAAAAAAAAMysXOwX6qbvWR8E71mElPKhnBD2yRRG9AACAPwAAgD+akEQ+EYcTP+trQb5JzsO+GZ6kPaJXhL4AAAAAAAAAACaxrj3yh34+XcWCvrSBmL7+6YS+upEcPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,13 +69,13 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVURAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItW6D2i/ackCUhpRSlIwBbJRNPAGMAXSUR0CfnVh37k4ndX2UKGgGaAloD0MIQURq2oXicECUhpRSlGgVS+9oFkdAn54tR3u/lHV9lChoBmgJaA9DCJq1FJB2Xm5AlIaUUpRoFUvxaBZHQJ+eSDtgKF91fZQoaAZoCWgPQwjtZdtpa/RzQJSGlFKUaBVL1WgWR0CfnojY7JXAdX2UKGgGaAloD0MI1VxuMFQPc0CUhpRSlGgVTRUBaBZHQJ+erUVi4KB1fZQoaAZoCWgPQwhW0opvqB5zQJSGlFKUaBVNGgFoFkdAn5/EvoNd7nV9lChoBmgJaA9DCNczhGPWv3BAlIaUUpRoFU0MAWgWR0CfoEgg5imVdX2UKGgGaAloD0MIQEtXsI1bbUCUhpRSlGgVTQMBaBZHQJ+iGuzQeFN1fZQoaAZoCWgPQwjba0HvjSVzQJSGlFKUaBVNgAFoFkdAn6JV8w5/9nV9lChoBmgJaA9DCK2lgLR/v3JAlIaUUpRoFU0lAWgWR0Cfopbah6BzdX2UKGgGaAloD0MImG2nrdH5cECUhpRSlGgVTRUBaBZHQJ+i/DWK/Eh1fZQoaAZoCWgPQwhMa9PYXnBwQJSGlFKUaBVNEAFoFkdAn6NJu63AmHV9lChoBmgJaA9DCCJUqdnD2nBAlIaUUpRoFUvnaBZHQJ+jbLmp2ll1fZQoaAZoCWgPQwh0J9h/HRBzQJSGlFKUaBVL5WgWR0Cfo9B7u2JBdX2UKGgGaAloD0MIEOfhBGavcUCUhpRSlGgVTREBaBZHQJ+j+FqSHM51fZQoaAZoCWgPQwgqkUQvo1BxQJSGlFKUaBVNJQFoFkdAn6T1gx8D0XV9lChoBmgJaA9DCDCgF+5cC29AlIaUUpRoFU0rAWgWR0CfpSk9U0emdX2UKGgGaAloD0MI1BBV+LN0ckCUhpRSlGgVS/loFkdAn6VCFfzBh3V9lChoBmgJaA9DCMO68e4IEXNAlIaUUpRoFU0FAWgWR0CfpXdUKiPAdX2UKGgGaAloD0MIi8HDtG+8ckCUhpRSlGgVTQkBaBZHQJ+mBmwqy4Z1fZQoaAZoCWgPQwhzLVqA9iByQJSGlFKUaBVNFwFoFkdAn6Y+EqUeMnV9lChoBmgJaA9DCGMOgo6W1XJAlIaUUpRoFUvXaBZHQJ+mVEofCAN1fZQoaAZoCWgPQwgJ+3YSEc5wQJSGlFKUaBVNAQFoFkdAn6bmi+L3sXV9lChoBmgJaA9DCDZy3ZRy925AlIaUUpRoFUvpaBZHQJ+odP69CeF1fZQoaAZoCWgPQwiNJayNsaZwQJSGlFKUaBVL62gWR0CfqPyYoiLVdX2UKGgGaAloD0MI0Oy6t2IqcUCUhpRSlGgVS/poFkdAn6k1BIFvAHV9lChoBmgJaA9DCPsHkQy513BAlIaUUpRoFUv0aBZHQJ+pnmr8zhx1fZQoaAZoCWgPQwhlic4yy71xQJSGlFKUaBVL7WgWR0Cfqkt7a7EpdX2UKGgGaAloD0MI8KfGSzddc0CUhpRSlGgVS/xoFkdAn6pMsQNCq3V9lChoBmgJaA9DCDvgumLGB25AlIaUUpRoFU0eAWgWR0CfqypXZGrkdX2UKGgGaAloD0MI7unqjgWMc0CUhpRSlGgVTRABaBZHQJ+rhG8VYZF1fZQoaAZoCWgPQwiCUx9I3u1wQJSGlFKUaBVL6mgWR0Cfq78Djin6dX2UKGgGaAloD0MI5xvRPWvebkCUhpRSlGgVTQMBaBZHQJ+sJ79hqj91fZQoaAZoCWgPQwgDCYof4xlyQJSGlFKUaBVL/mgWR0CfrDcNpdrwdX2UKGgGaAloD0MIiZro81Hhb0CUhpRSlGgVTQYBaBZHQJ+sx7IDHOt1fZQoaAZoCWgPQwj93NCUnXVwQJSGlFKUaBVL+WgWR0CfrRGATZg5dX2UKGgGaAloD0MIRbx1/q2scUCUhpRSlGgVS/1oFkdAn61rfUF0P3V9lChoBmgJaA9DCL8Qct6/qHFAlIaUUpRoFUv9aBZHQJ+thNdqtYB1fZQoaAZoCWgPQwjXGHRC6KFxQJSGlFKUaBVNBAFoFkdAn64+jRD1G3V9lChoBmgJaA9DCJM4K6ImynJAlIaUUpRoFUvyaBZHQJ/C+yfL9uR1fZQoaAZoCWgPQwisqSwKe+VwQJSGlFKUaBVL4mgWR0CfwwDaoMrmdX2UKGgGaAloD0MIT+eKUoKDcECUhpRSlGgVS/xoFkdAn8RbrLQokXV9lChoBmgJaA9DCHSZmgQvzHBAlIaUUpRoFU0RAWgWR0CfxJVXmvGIdX2UKGgGaAloD0MIs7eU8wWBc0CUhpRSlGgVS/JoFkdAn8TBzJZGKHV9lChoBmgJaA9DCECKOnPPEnFAlIaUUpRoFUvhaBZHQJ/FGMxXXAd1fZQoaAZoCWgPQwjzxklhHvlyQJSGlFKUaBVL4GgWR0CfxWIfbKzSdX2UKGgGaAloD0MINjtSfeeJcECUhpRSlGgVS+FoFkdAn8dGTxG2C3V9lChoBmgJaA9DCHlZEwt8sGtAlIaUUpRoFU0QAWgWR0Cfx1CaJAMVdX2UKGgGaAloD0MIXaW762zXcECUhpRSlGgVTQIBaBZHQJ/HYjrzGxV1fZQoaAZoCWgPQwgW9rTDX61tQJSGlFKUaBVL+GgWR0Cfx7ibUgB+dX2UKGgGaAloD0MIrAMg7mr2cUCUhpRSlGgVTSQBaBZHQJ/IYYO2AoZ1fZQoaAZoCWgPQwjQJodPuspwQJSGlFKUaBVL+2gWR0CfyIE7W/ahdX2UKGgGaAloD0MIQ8cOKnEZc0CUhpRSlGgVTRoBaBZHQJ/JfXe3x4J1fZQoaAZoCWgPQwjPZtXn6sFsQJSGlFKUaBVNCwFoFkdAn8ns495hSnV9lChoBmgJaA9DCGB4JckzhnNAlIaUUpRoFUv/aBZHQJ/KyMDOkcl1fZQoaAZoCWgPQwhIh4cw/iFvQJSGlFKUaBVNBgFoFkdAn8sHWBjFynV9lChoBmgJaA9DCNFa0ea4ZHFAlIaUUpRoFUvdaBZHQJ/MAtYjjaR1fZQoaAZoCWgPQwiTcCGP4GtxQJSGlFKUaBVNDgFoFkdAn80Wwu/UOXV9lChoBmgJaA9DCE4MyclE1nFAlIaUUpRoFU0RAWgWR0CfzWPuG9HudX2UKGgGaAloD0MIvXK9bWb8ckCUhpRSlGgVTQABaBZHQJ/Nlo/Rmbt1fZQoaAZoCWgPQwgHI/YJ4KVxQJSGlFKUaBVNLQFoFkdAn83jMRpUP3V9lChoBmgJaA9DCGiWBKjpOHJAlIaUUpRoFUvgaBZHQJ/OWD8Lrop1fZQoaAZoCWgPQwhYVS+/E/BxQJSGlFKUaBVL32gWR0Cfzq8fms/6dX2UKGgGaAloD0MI6X+5Fm2RcUCUhpRSlGgVS+FoFkdAn89qbSZ0CHV9lChoBmgJaA9DCCAqjZgZTXJAlIaUUpRoFU0WAWgWR0Cf0B3Gn4widX2UKGgGaAloD0MIA9L+BxgzcUCUhpRSlGgVTR0BaBZHQJ/QP7Hhjvx1fZQoaAZoCWgPQwhNaJJYErpxQJSGlFKUaBVL+2gWR0Cf0GMRHww1dX2UKGgGaAloD0MIfa62Yr9lckCUhpRSlGgVS/poFkdAn9FWQr+YMXV9lChoBmgJaA9DCGZrfZHQv3BAlIaUUpRoFUvYaBZHQJ/RkiILw4N1fZQoaAZoCWgPQwi13QTfNKtuQJSGlFKUaBVL4GgWR0Cf0gV4X40udX2UKGgGaAloD0MIvJaQD3pscECUhpRSlGgVTRcBaBZHQJ/SlW2gFot1fZQoaAZoCWgPQwgqOLwgYjVxQJSGlFKUaBVL4mgWR0Cf0vdbPhQ4dX2UKGgGaAloD0MIgJwwYbTHckCUhpRSlGgVTQMBaBZHQJ/VCYE4ecR1fZQoaAZoCWgPQwiEglK0clxvQJSGlFKUaBVNAAFoFkdAn9VAUg0TDnV9lChoBmgJaA9DCET4F0Gj6XBAlIaUUpRoFU0JAWgWR0Cf1cFrl/6PdX2UKGgGaAloD0MI8KZbdggsbUCUhpRSlGgVS/ZoFkdAn9XtKIznBHV9lChoBmgJaA9DCFO0ci8wlHBAlIaUUpRoFU0QAWgWR0Cf1zTINmUXdX2UKGgGaAloD0MIwtzu5b5kcUCUhpRSlGgVTQABaBZHQJ/XfdM0xdp1fZQoaAZoCWgPQwhLr83GCmFxQJSGlFKUaBVNRQFoFkdAn9gyYb83uXV9lChoBmgJaA9DCFTJAFDFcHFAlIaUUpRoFUv1aBZHQJ/YMuL74zt1fZQoaAZoCWgPQwhgOUIGMk5xQJSGlFKUaBVNCgFoFkdAn9ix4Y77sXV9lChoBmgJaA9DCDKSPUKN03BAlIaUUpRoFU0SAWgWR0Cf2NBC2MKkdX2UKGgGaAloD0MIaJJYUq4scECUhpRSlGgVS+JoFkdAn9jnVf/m1nV9lChoBmgJaA9DCOUmamnuYHJAlIaUUpRoFU0AAWgWR0Cf2Xz/p+tsdX2UKGgGaAloD0MId/NUh1yDbkCUhpRSlGgVS+xoFkdAn9mYxUNrkHV9lChoBmgJaA9DCJeL+E4Mb3FAlIaUUpRoFU0KAWgWR0Cf2wL6DXe4dX2UKGgGaAloD0MIVOI6xpURc0CUhpRSlGgVTQIBaBZHQJ/bK8BdUsF1fZQoaAZoCWgPQwiaJJaUu2BZQJSGlFKUaBVN6ANoFkdAn9xvPw/gSHV9lChoBmgJaA9DCGb6JeKtnW9AlIaUUpRoFUv0aBZHQJ/ctKXfIjp1fZQoaAZoCWgPQwhFgxQ8hSpwQJSGlFKUaBVL+WgWR0Cf3XbaAWi2dX2UKGgGaAloD0MIILWJkzsbcECUhpRSlGgVS/poFkdAn92lmOEM9nV9lChoBmgJaA9DCG+9pgdF83BAlIaUUpRoFUvpaBZHQJ/eObe/Ho51fZQoaAZoCWgPQwjn/upxX7RvQJSGlFKUaBVNNAFoFkdAn97E5IYm9nV9lChoBmgJaA9DCPmGwmdrs3BAlIaUUpRoFUv0aBZHQJ/ezAoG6f91fZQoaAZoCWgPQwj6DRMN0g9xQJSGlFKUaBVL7GgWR0Cf3yHUMG5ddX2UKGgGaAloD0MI11HVBNFBbkCUhpRSlGgVTQYBaBZHQJ/f2Ymb9ZR1fZQoaAZoCWgPQwibAMPyp1BxQJSGlFKUaBVNAAFoFkdAn+BHL7oB73V9lChoBmgJaA9DCOF6FK4HBHBAlIaUUpRoFUvxaBZHQJ/gqxD9fkZ1fZQoaAZoCWgPQwglkX2QpQJzQJSGlFKUaBVNEQFoFkdAn+DYQSSNfnV9lChoBmgJaA9DCJLLf0h/UHFAlIaUUpRoFU0NAWgWR0Cf4VHy3CsPdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 372,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1665336109988157861,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC8bL0ff9K7oG5yPVyzJD2S/Tq9wE8HPgAAgD8AAIA/ACi6PHcGFz6H08I9ZxGMvg01qD20ULg7AAAAAAAAAADmrQ49SAuduq3GRDlzP0s0bmKnOlbQYrgAAIA/AACAPzMHiDxcaz26dD1IPEHnJ7bEdIM6JvQntQAAgD8AAIA/MzfEvDb6KbyCFjs8hDwSPNCoi71ujfw8AACAPwAAgD9mgVY+vPyiPjBvDL8FIMm+Dp1aPvLhj74AAAAAAAAAAOaMhb0yTrc/nvZTvrPCn75DpEy7OmMPvgAAAAAAAAAAZqrDvb5ZpT32NYE+6bKAvj+0AjzI0Og8AAAAAAAAAACN/I89EvApPk1o573GcVO+JBDKvLYlpL0AAAAAAAAAAJo42zwrg7A/gRsFPwCorL7Xsja8K5nVPAAAAAAAAAAAmuUPPcGoAT7tosY9hlJWvm99xzyvwQk9AAAAAAAAAACa6aI97jRpP6pqRz0yWxK/Bay9PTSEIL0AAAAAAAAAANp9hL2BBYc+C5FMPlq7m75P3lc8M78FPQAAAAAAAAAAmsHBu74cuj8eHoi9snrZPck53DsNtXM8AAAAAAAAAACNrbc9NfyWP5AmwT4cLiq/xVIiPn0z6j0AAAAAAAAAAE0xqL0sPJc+2V+EPmZFr77n9WQ92hufuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIseB+wIPxb0CUhpRSlIwBbJRL/owBdJRHQKNv6WUKRdR1fZQoaAZoCWgPQwiLVBhbSJlwQJSGlFKUaBVL4GgWR0Cjb+2JrLyMdX2UKGgGaAloD0MIJZASuzaXcUCUhpRSlGgVTRcBaBZHQKNwTkhA4XJ1fZQoaAZoCWgPQwhcHJWbqEtGQJSGlFKUaBVLkmgWR0CjcFFQ2uPndX2UKGgGaAloD0MIjIS2nEv4cUCUhpRSlGgVTasBaBZHQKNwiaa1Cw91fZQoaAZoCWgPQwjnqnmOyOVwQJSGlFKUaBVL0WgWR0CjcPLa/RE4dX2UKGgGaAloD0MIYyZRL3iib0CUhpRSlGgVS+NoFkdAo3DzF4s3AHV9lChoBmgJaA9DCCy2SUWjJnJAlIaUUpRoFUvWaBZHQKNw/l0YCQt1fZQoaAZoCWgPQwhJS+XtCCVsQJSGlFKUaBVL3WgWR0CjcQ+xW1c/dX2UKGgGaAloD0MI7iO3Jt3oQUCUhpRSlGgVS45oFkdAo3EhLIxQBXV9lChoBmgJaA9DCMIWu32WF3BAlIaUUpRoFUvUaBZHQKNyOZXMhX91fZQoaAZoCWgPQwj8bU+QWGduQJSGlFKUaBVL3mgWR0Cjcmy2H+IedX2UKGgGaAloD0MIZhAf2HFgckCUhpRSlGgVS+toFkdAo3KVLamGd3V9lChoBmgJaA9DCB7EzhQ6FnBAlIaUUpRoFUvzaBZHQKNytq4YrJ91fZQoaAZoCWgPQwjoaiv2l9NvQJSGlFKUaBVL4WgWR0CjcufO2RaHdX2UKGgGaAloD0MIecvVjw1ccECUhpRSlGgVS+1oFkdAo3L7W7OE/XV9lChoBmgJaA9DCOHQWzx8X3JAlIaUUpRoFUvxaBZHQKNzKRsdkrh1fZQoaAZoCWgPQwiH3uLhPQdwQJSGlFKUaBVL4GgWR0Cjc1hScbzcdX2UKGgGaAloD0MIuCBblm8Ec0CUhpRSlGgVS+RoFkdAo3NpFNL13HV9lChoBmgJaA9DCPEPW3p0EHJAlIaUUpRoFUvhaBZHQKN0QraM72d1fZQoaAZoCWgPQwhgP8QGSz9zQJSGlFKUaBVNDwFoFkdAo3RQEMb3oXV9lChoBmgJaA9DCBeBsb6Bq3NAlIaUUpRoFUvvaBZHQKN0VxjriVB1fZQoaAZoCWgPQwi+F1+0R11yQJSGlFKUaBVL+2gWR0CjdIBCdBjXdX2UKGgGaAloD0MIxF4oYDuYcUCUhpRSlGgVTRMBaBZHQKN1DR51Ng11fZQoaAZoCWgPQwi8kXnkD5VwQJSGlFKUaBVNNwFoFkdAo3VkEJSiunV9lChoBmgJaA9DCO3xQjo8lW5AlIaUUpRoFUvlaBZHQKN1wNc4YJp1fZQoaAZoCWgPQwh56LtbmYRyQJSGlFKUaBVL0mgWR0CjdcV5jYqYdX2UKGgGaAloD0MIC+9yEd8fckCUhpRSlGgVS9BoFkdAo3YD7TDwY3V9lChoBmgJaA9DCMNGWb+ZI3FAlIaUUpRoFUvsaBZHQKN2CIldC3R1fZQoaAZoCWgPQwhbQGg9/GptQJSGlFKUaBVL+2gWR0CjdpTcRDkVdX2UKGgGaAloD0MIOWOYE7RGcUCUhpRSlGgVS+JoFkdAo3ao2fkFOnV9lChoBmgJaA9DCJhNgGE5Q3FAlIaUUpRoFUv0aBZHQKOAs4cWCVd1fZQoaAZoCWgPQwip2m6CL8pwQJSGlFKUaBVNBwFoFkdAo4C4acZtN3V9lChoBmgJaA9DCD9ya9ItEnJAlIaUUpRoFUvMaBZHQKOBABtk4FR1fZQoaAZoCWgPQwh2/u2y30FyQJSGlFKUaBVL32gWR0CjgTMHjZL7dX2UKGgGaAloD0MInZ0MjpL4cUCUhpRSlGgVS+doFkdAo4FX0oScsnV9lChoBmgJaA9DCEeNCTEX225AlIaUUpRoFUvcaBZHQKOBYH58BuJ1fZQoaAZoCWgPQwhhi90+a7txQJSGlFKUaBVL3mgWR0CjgfFl9SdfdX2UKGgGaAloD0MIXMtkOB7abkCUhpRSlGgVS9JoFkdAo4Ig9LYf4nV9lChoBmgJaA9DCB9lxAVgk3FAlIaUUpRoFUvpaBZHQKOC2DM/yG11fZQoaAZoCWgPQwi13QTftDVuQJSGlFKUaBVL42gWR0Cjgwds7+1jdX2UKGgGaAloD0MIY1+y8eDycECUhpRSlGgVS+NoFkdAo4MMGeMAFXV9lChoBmgJaA9DCDRKl/7lkHFAlIaUUpRoFUv+aBZHQKODNGXokiV1fZQoaAZoCWgPQwi1N/jCZCNwQJSGlFKUaBVL5WgWR0Cjg6V/DtPYdX2UKGgGaAloD0MIN/sD5fbBcUCUhpRSlGgVS+FoFkdAo4QEHWz4UXV9lChoBmgJaA9DCKqAe54/xHFAlIaUUpRoFUv/aBZHQKOEIJUHY6J1fZQoaAZoCWgPQwinrRHBOFBvQJSGlFKUaBVL6WgWR0CjhCO9FnZkdX2UKGgGaAloD0MIj8ahfpcEdECUhpRSlGgVS/loFkdAo4StcyFfzHV9lChoBmgJaA9DCFTIlXoWGHBAlIaUUpRoFUvdaBZHQKOErat9x6x1fZQoaAZoCWgPQwg7cw8JXyduQJSGlFKUaBVL72gWR0CjhLy8BdUsdX2UKGgGaAloD0MIf03WqEeccECUhpRSlGgVS+RoFkdAo4S89SuQqHV9lChoBmgJaA9DCNOjqZ6MknBAlIaUUpRoFUvTaBZHQKOFGjeKsMl1fZQoaAZoCWgPQwjbMuAspaZwQJSGlFKUaBVNeAJoFkdAo4UojB2wFHV9lChoBmgJaA9DCHqqQ26GdXJAlIaUUpRoFU0KAWgWR0CjhgdHMEA6dX2UKGgGaAloD0MIqmVrfVG9ckCUhpRSlGgVS9FoFkdAo4YLfBN21XV9lChoBmgJaA9DCMmwijeyInJAlIaUUpRoFUvmaBZHQKOGYClrM1V1fZQoaAZoCWgPQwgv3o/br9xzQJSGlFKUaBVL9mgWR0Cjhm5cLSeAdX2UKGgGaAloD0MIgbG+gQltcUCUhpRSlGgVS/hoFkdAo4bAqPOpsHV9lChoBmgJaA9DCG1Zvi7D+nFAlIaUUpRoFUvFaBZHQKOG4gB91EF1fZQoaAZoCWgPQwh7+gj84R1zQJSGlFKUaBVLy2gWR0Cjhvr5ZbIMdX2UKGgGaAloD0MIHqUSntALXkCUhpRSlGgVTegDaBZHQKOHJEMspXp1fZQoaAZoCWgPQwjI7236s2RyQJSGlFKUaBVNAQFoFkdAo4dKmTC+DnV9lChoBmgJaA9DCOknnN0aUnNAlIaUUpRoFU0BAWgWR0Cjh50mlZX/dX2UKGgGaAloD0MI7bq3InGPcECUhpRSlGgVS+FoFkdAo4fYgRsdk3V9lChoBmgJaA9DCGdEaW/wInNAlIaUUpRoFUvlaBZHQKOH17di2Dx1fZQoaAZoCWgPQwjjFvNzww9yQJSGlFKUaBVL8GgWR0Cjh/pGOMl1dX2UKGgGaAloD0MIpwTEJBwqc0CUhpRSlGgVTRUBaBZHQKOIiTNdJJ51fZQoaAZoCWgPQwifkJ23sb1uQJSGlFKUaBVL/mgWR0CjiJoHkcS5dX2UKGgGaAloD0MIBAMIH8oZckCUhpRSlGgVTQgBaBZHQKOIx93KSxJ1fZQoaAZoCWgPQwja4hqfSWJxQJSGlFKUaBVL1mgWR0CjiO8Empl0dX2UKGgGaAloD0MI529CIYIIc0CUhpRSlGgVS95oFkdAo4kFG5MDfXV9lChoBmgJaA9DCDfg88MIV3JAlIaUUpRoFUvMaBZHQKOJE52hZhd1fZQoaAZoCWgPQwj44ov2+JxxQJSGlFKUaBVL0WgWR0CjiZ047zTXdX2UKGgGaAloD0MIzR39L9fnbkCUhpRSlGgVS9toFkdAo4mhQDV6NXV9lChoBmgJaA9DCKa3PxcNEU1AlIaUUpRoFUuUaBZHQKOJvrtVrAR1fZQoaAZoCWgPQwindLD+T+dsQJSGlFKUaBVL1WgWR0Cjieb1RLsbdX2UKGgGaAloD0MIXmbYKGticUCUhpRSlGgVS/hoFkdAo4o8waisXHV9lChoBmgJaA9DCFrW/WNhknFAlIaUUpRoFU0hAWgWR0CjikGbb1yvdX2UKGgGaAloD0MIYW73cp+9cECUhpRSlGgVS9doFkdAo4qkBOpKjHV9lChoBmgJaA9DCHQNMzQeanFAlIaUUpRoFUvxaBZHQKOKwn6VMVV1fZQoaAZoCWgPQwhRS3MrRJ5wQJSGlFKUaBVNGgFoFkdAo4r1dmg8KXV9lChoBmgJaA9DCP29FB501HJAlIaUUpRoFUvlaBZHQKOK9aRISUV1fZQoaAZoCWgPQwiqSIWxBSVzQJSGlFKUaBVL3GgWR0Cji2lAVwgldX2UKGgGaAloD0MI4xk09A+SckCUhpRSlGgVS/hoFkdAo4u4UDdP+HV9lChoBmgJaA9DCJEpH4JqgXBAlIaUUpRoFUvcaBZHQKOLxj5Kvmp1fZQoaAZoCWgPQwgBF2TL8mNyQJSGlFKUaBVL32gWR0Cji+e3Ytg8dX2UKGgGaAloD0MIm6+Sjx2rckCUhpRSlGgVS/loFkdAo4v6ohpxm3V9lChoBmgJaA9DCJEpH4KqkW5AlIaUUpRoFUvnaBZHQKOMD+vQnhN1fZQoaAZoCWgPQwjMm8O1Gl1wQJSGlFKUaBVL1WgWR0CjjF1V5rxidX2UKGgGaAloD0MIyNCxgwq+cECUhpRSlGgVS9loFkdAo4yv0PH1e3V9lChoBmgJaA9DCFtAaD181HBAlIaUUpRoFUvwaBZHQKOMs4iosI51fZQoaAZoCWgPQwg66BIOPZ1uQJSGlFKUaBVL5mgWR0CjjLOKO1fFdX2UKGgGaAloD0MIb59VZkq0UkCUhpRSlGgVS6doFkdAo4y/lKbrknV9lChoBmgJaA9DCBnkLsLUVXFAlIaUUpRoFUvgaBZHQKONBLCemN11fZQoaAZoCWgPQwiQ2Vn0zvhyQJSGlFKUaBVL72gWR0CjjTZ5zHS4dX2UKGgGaAloD0MIQ4zXvGrAcUCUhpRSlGgVS9loFkdAo42ZjFyaNXV9lChoBmgJaA9DCEwbDkvD4HFAlIaUUpRoFU0FAWgWR0CjjfcdPtUodX2UKGgGaAloD0MI7WKa6d6ocUCUhpRSlGgVS/poFkdAo44G+dsi0XV9lChoBmgJaA9DCDyjrUqicHFAlIaUUpRoFUvHaBZHQKOOMRLbpNd1fZQoaAZoCWgPQwhC6nb2lYdyQJSGlFKUaBVL5mgWR0CjjkGetjkNdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 496,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:00942dab03fde57f5e0618223b96b440b2d6a3ac65dacdf5a125a3a4dcf116dc
3
  size 87865
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac4dd47ed309c3ebb764c0e97b3b825fd46693c84a10790129eba513d964bcf7
3
  size 87865
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9419e5c42f99be977df32ac696e6d8d083c8fb2c65f587c95ee909b86edda34b
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e717c5a49aef29b3b0fdd7e5b7f871ca9483f52818518fb33de835c00c42e07e
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:84fa28ec96d226770a01a93dee89936a0f92c8ef9291f86d5765e9fdbb9f603a
3
- size 220805
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d06b74d4bef4b2a4b4f5308b599389e23bb6039e12787bc3f58ce14b23369605
3
+ size 213430
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 257.0284775577961, "std_reward": 28.52554089722697, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-09T17:20:35.869391"}
 
1
+ {"mean_reward": 259.0106376019131, "std_reward": 18.128932999764256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-09T17:28:04.400725"}