update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: multi-label-class-classification-on-github-issues
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# multi-label-class-classification-on-github-issues
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.3836
|
18 |
+
- Micro f1: 0.4888
|
19 |
+
- Macro f1: 0.0304
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 3e-05
|
39 |
+
- train_batch_size: 512
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 15
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Micro f1 | Macro f1 |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
|
50 |
+
| No log | 1.0 | 4 | 0.6376 | 0.1870 | 0.0280 |
|
51 |
+
| No log | 2.0 | 8 | 0.5847 | 0.1961 | 0.0154 |
|
52 |
+
| No log | 3.0 | 12 | 0.5465 | 0.1967 | 0.0146 |
|
53 |
+
| No log | 4.0 | 16 | 0.5148 | 0.1982 | 0.0146 |
|
54 |
+
| No log | 5.0 | 20 | 0.4878 | 0.2915 | 0.0187 |
|
55 |
+
| No log | 6.0 | 24 | 0.4653 | 0.4655 | 0.0301 |
|
56 |
+
| No log | 7.0 | 28 | 0.4465 | 0.4862 | 0.0305 |
|
57 |
+
| No log | 8.0 | 32 | 0.4310 | 0.4884 | 0.0305 |
|
58 |
+
| No log | 9.0 | 36 | 0.4179 | 0.4894 | 0.0305 |
|
59 |
+
| No log | 10.0 | 40 | 0.4072 | 0.4894 | 0.0305 |
|
60 |
+
| No log | 11.0 | 44 | 0.3986 | 0.4893 | 0.0305 |
|
61 |
+
| No log | 12.0 | 48 | 0.3921 | 0.4893 | 0.0305 |
|
62 |
+
| No log | 13.0 | 52 | 0.3875 | 0.4888 | 0.0304 |
|
63 |
+
| No log | 14.0 | 56 | 0.3847 | 0.4888 | 0.0304 |
|
64 |
+
| No log | 15.0 | 60 | 0.3836 | 0.4888 | 0.0304 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.24.0
|
70 |
+
- Pytorch 1.12.1+cu113
|
71 |
+
- Datasets 2.7.1
|
72 |
+
- Tokenizers 0.13.2
|