Ramikan-BR
commited on
Commit
•
4fe6e8d
1
Parent(s):
09879c8
Update README.md
Browse files
README.md
CHANGED
@@ -198,9 +198,81 @@ Step Training Loss
|
|
198 |
4 0.331900
|
199 |
5 0.276100
|
200 |
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
|
|
204 |
|
205 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
206 |
|
|
|
198 |
4 0.331900
|
199 |
5 0.276100
|
200 |
|
201 |
+
Quick test 1 after training the last part of the dataset:
|
202 |
+
|
203 |
+
# alpaca_prompt = Copied from above
|
204 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
205 |
+
inputs = tokenizer(
|
206 |
+
[
|
207 |
+
alpaca_prompt.format(
|
208 |
+
"Continue the fibonnaci sequence.", # instruction
|
209 |
+
"1, 1, 2, 3, 5, 8", # input
|
210 |
+
"", # output - leave this blank for generation!
|
211 |
+
)
|
212 |
+
], return_tensors = "pt").to("cuda")
|
213 |
+
|
214 |
+
AI Response: ['<s> Below is an instruction that describes a task. Write a response that appropriately completes the request.\n### Input:\nContinue the fibonnaci sequence.\n\n### Output:\n1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 420, 787, 1444, 2881, 4765, 8640']
|
215 |
+
|
216 |
+
Quick test 2 after training the last part of the dataset:
|
217 |
+
|
218 |
+
# alpaca_prompt = Copied from above
|
219 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
220 |
+
inputs = tokenizer(
|
221 |
+
[
|
222 |
+
alpaca_prompt.format(
|
223 |
+
"Continue the fibonnaci sequence.", # instruction
|
224 |
+
"1, 1, 2, 3, 5, 8", # input
|
225 |
+
"", # output - leave this blank for generation!
|
226 |
+
)
|
227 |
+
], return_tensors = "pt").to("cuda")
|
228 |
+
|
229 |
+
from transformers import TextStreamer
|
230 |
+
text_streamer = TextStreamer(tokenizer)
|
231 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
|
232 |
+
|
233 |
+
AI Response: <s> Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
234 |
+
### Input:
|
235 |
+
Continue the fibonnaci sequence.
|
236 |
+
|
237 |
+
### Output:
|
238 |
+
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 420, 787, 1444, 2881, 4765, 8640, 17281, 31362, 65325, 128672, 251345, 410000, 720000, 1280000,
|
239 |
+
|
240 |
+
Quick test 3 after training the last part of the dataset:
|
241 |
+
|
242 |
+
if False:
|
243 |
+
from unsloth import FastLanguageModel
|
244 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
245 |
+
model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING
|
246 |
+
max_seq_length = max_seq_length,
|
247 |
+
dtype = dtype,
|
248 |
+
load_in_4bit = load_in_4bit,
|
249 |
+
)
|
250 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
251 |
+
|
252 |
+
# alpaca_prompt = You MUST copy from above!
|
253 |
+
|
254 |
+
inputs = tokenizer(
|
255 |
+
[
|
256 |
+
alpaca_prompt.format(
|
257 |
+
"What is a famous tall tower in Paris?", # instruction
|
258 |
+
"", # input
|
259 |
+
"", # output - leave this blank for generation!
|
260 |
+
)
|
261 |
+
], return_tensors = "pt").to("cuda")
|
262 |
+
|
263 |
+
from transformers import TextStreamer
|
264 |
+
text_streamer = TextStreamer(tokenizer)
|
265 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 64)
|
266 |
+
|
267 |
+
AI Response: <s> Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
268 |
+
### Input:
|
269 |
+
What is a famous tall tower in Paris?
|
270 |
+
|
271 |
+
### Output:
|
272 |
+
The famous tall tower in Paris is the Eiffel Tower. It is a 300-meter-tall steel tower located in the heart of Paris, France. The tower was built in 18892 and is a popular tourist attraction. It is also a symbol of the city
|
273 |
|
274 |
+
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
|
275 |
+
tokenizer.batch_decode(outputs)
|
276 |
|
277 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
278 |
|