Ramikan-BR commited on
Commit
4fe6e8d
1 Parent(s): 09879c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -2
README.md CHANGED
@@ -198,9 +198,81 @@ Step Training Loss
198
  4 0.331900
199
  5 0.276100
200
 
201
- Parameters:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
 
203
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
204
 
205
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
206
 
 
198
  4 0.331900
199
  5 0.276100
200
 
201
+ Quick test 1 after training the last part of the dataset:
202
+
203
+ # alpaca_prompt = Copied from above
204
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
205
+ inputs = tokenizer(
206
+ [
207
+ alpaca_prompt.format(
208
+ "Continue the fibonnaci sequence.", # instruction
209
+ "1, 1, 2, 3, 5, 8", # input
210
+ "", # output - leave this blank for generation!
211
+ )
212
+ ], return_tensors = "pt").to("cuda")
213
+
214
+ AI Response: ['<s> Below is an instruction that describes a task. Write a response that appropriately completes the request.\n### Input:\nContinue the fibonnaci sequence.\n\n### Output:\n1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 420, 787, 1444, 2881, 4765, 8640']
215
+
216
+ Quick test 2 after training the last part of the dataset:
217
+
218
+ # alpaca_prompt = Copied from above
219
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
220
+ inputs = tokenizer(
221
+ [
222
+ alpaca_prompt.format(
223
+ "Continue the fibonnaci sequence.", # instruction
224
+ "1, 1, 2, 3, 5, 8", # input
225
+ "", # output - leave this blank for generation!
226
+ )
227
+ ], return_tensors = "pt").to("cuda")
228
+
229
+ from transformers import TextStreamer
230
+ text_streamer = TextStreamer(tokenizer)
231
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
232
+
233
+ AI Response: <s> Below is an instruction that describes a task. Write a response that appropriately completes the request.
234
+ ### Input:
235
+ Continue the fibonnaci sequence.
236
+
237
+ ### Output:
238
+ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 420, 787, 1444, 2881, 4765, 8640, 17281, 31362, 65325, 128672, 251345, 410000, 720000, 1280000,
239
+
240
+ Quick test 3 after training the last part of the dataset:
241
+
242
+ if False:
243
+ from unsloth import FastLanguageModel
244
+ model, tokenizer = FastLanguageModel.from_pretrained(
245
+ model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING
246
+ max_seq_length = max_seq_length,
247
+ dtype = dtype,
248
+ load_in_4bit = load_in_4bit,
249
+ )
250
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
251
+
252
+ # alpaca_prompt = You MUST copy from above!
253
+
254
+ inputs = tokenizer(
255
+ [
256
+ alpaca_prompt.format(
257
+ "What is a famous tall tower in Paris?", # instruction
258
+ "", # input
259
+ "", # output - leave this blank for generation!
260
+ )
261
+ ], return_tensors = "pt").to("cuda")
262
+
263
+ from transformers import TextStreamer
264
+ text_streamer = TextStreamer(tokenizer)
265
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 64)
266
+
267
+ AI Response: <s> Below is an instruction that describes a task. Write a response that appropriately completes the request.
268
+ ### Input:
269
+ What is a famous tall tower in Paris?
270
+
271
+ ### Output:
272
+ The famous tall tower in Paris is the Eiffel Tower. It is a 300-meter-tall steel tower located in the heart of Paris, France. The tower was built in 18892 and is a popular tourist attraction. It is also a symbol of the city
273
 
274
+ outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
275
+ tokenizer.batch_decode(outputs)
276
 
277
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
278