End of training
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: Ransaka/sinhala-bert-medium-v2
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: Sinhala-toxic-bert
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# Sinhala-toxic-bert
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Ransaka/sinhala-bert-medium-v2](https://huggingface.co/Ransaka/sinhala-bert-medium-v2) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.2358
|
21 |
+
- F1: 0.8877
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0002
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- training_steps: 1000
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
52 |
+
| 0.4053 | 0.08 | 100 | 0.2802 | 0.8677 |
|
53 |
+
| 0.3768 | 0.16 | 200 | 0.3123 | 0.8616 |
|
54 |
+
| 0.3334 | 0.24 | 300 | 0.2810 | 0.8732 |
|
55 |
+
| 0.2906 | 0.32 | 400 | 0.2554 | 0.8779 |
|
56 |
+
| 0.3027 | 0.4 | 500 | 0.2595 | 0.8836 |
|
57 |
+
| 0.2612 | 0.48 | 600 | 0.2797 | 0.8592 |
|
58 |
+
| 0.2568 | 0.56 | 700 | 0.2474 | 0.8785 |
|
59 |
+
| 0.2325 | 0.64 | 800 | 0.2546 | 0.8816 |
|
60 |
+
| 0.2272 | 0.72 | 900 | 0.2424 | 0.8878 |
|
61 |
+
| 0.2331 | 0.8 | 1000 | 0.2358 | 0.8877 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.35.2
|
67 |
+
- Pytorch 2.1.0+cu118
|
68 |
+
- Datasets 2.15.0
|
69 |
+
- Tokenizers 0.15.0
|