--- license: mit base_model: Ransaka/sinhala-bert-medium-v2 tags: - generated_from_trainer metrics: - f1 model-index: - name: SentimentClassifier.si results: [] language: - si pipeline_tag: text-classification --- # Sinhala-toxic-bert This model is a fine-tuned version of [Ransaka/sinhala-bert-medium-v2](https://huggingface.co/Ransaka/sinhala-bert-medium-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2358 - F1: 0.8877 ## Intended uses & limitations More information needed ## Training and evaluation data Labels ```plaintext NEGATIVE: 1 POSITIVE: 0 ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4053 | 0.08 | 100 | 0.2802 | 0.8677 | | 0.3768 | 0.16 | 200 | 0.3123 | 0.8616 | | 0.3334 | 0.24 | 300 | 0.2810 | 0.8732 | | 0.2906 | 0.32 | 400 | 0.2554 | 0.8779 | | 0.3027 | 0.4 | 500 | 0.2595 | 0.8836 | | 0.2612 | 0.48 | 600 | 0.2797 | 0.8592 | | 0.2568 | 0.56 | 700 | 0.2474 | 0.8785 | | 0.2325 | 0.64 | 800 | 0.2546 | 0.8816 | | 0.2272 | 0.72 | 900 | 0.2424 | 0.8878 | | 0.2331 | 0.8 | 1000 | 0.2358 | 0.8877 | Model performance on validation dataset ```plaintext precision recall f1-score support 0 0.95 0.92 0.93 6943 1 0.82 0.88 0.84 2913 accuracy 0.90 9856 macro avg 0.88 0.90 0.89 9856 weighted avg 0.91 0.90 0.91 9856 ``` Confusion Matrix on Validation Data ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0