--- base_model: Ransaka/sinhala-ocr-model model-index: - name: sinhala-ocr-model-v2 results: [] pipeline_tag: image-to-text --- # TrOCR-Sinhala See training metrics tab for performance details. ## Model description This model is finetuned version of Microsoft [TrOCR Printed](https://huggingface.co/microsoft/trocr-base-printed) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Example ```python from PIL import Image import requests from io import BytesIO from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer image_url = "https://datasets-server.huggingface.co/assets/Ransaka/sinhala_synthetic_ocr/--/bf7c8a455b564cd73fe035031e19a5f39babb73b/--/default/train/0/image/image.jpg" response = requests.get(image_url) img = Image.open(BytesIO(response.content)) processor = TrOCRProcessor.from_pretrained('Ransaka/TrOCR-Sinhala') model = VisionEncoderDecoderModel.from_pretrained('Ransaka/TrOCR-Sinhala') model.to("cuda:0") pixel_values = processor(img, return_tensors="pt").pixel_values.to('cuda:0') generated_ids = model.generate(pixel_values,num_beams=2,early_stopping=True) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] generated_text #දිවයිනට බලයට ඇති ආපදා තත්ත්වය හමුවේ සබරගමුව පළාතේ ``` ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.0 - Datasets 2.16.0 - Tokenizers 0.15.0