--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - sinhala_asr metrics: - wer model-index: - name: whisper-tiny-si results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: sinhala_asr type: sinhala_asr config: default split: test args: default metrics: - name: Wer type: wer value: 169.24044840997482 --- # whisper-tiny-si This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the sinhala_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.2660 - Wer: 169.2404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3098 | 1.6 | 1000 | 0.3362 | 183.1274 | | 0.184 | 3.2 | 2000 | 0.2752 | 147.9181 | | 0.1626 | 4.8 | 3000 | 0.2663 | 116.8383 | | 0.1283 | 6.4 | 4000 | 0.2660 | 169.2404 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0