File size: 1,661 Bytes
a7c769c
 
 
 
 
 
 
 
 
 
 
 
 
0e234cb
a7c769c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29900e6
 
a7c769c
 
 
 
 
 
 
 
 
 
 
 
 
777c093
a7c769c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: apache-2.0
tags:
- pretrained
- mistral
- DNA
- codon
---

# Model Card for Mistral-Codon-v1-117M (Mistral for coding DNA)

The Mistral-Codon-v1-117M Large Language Model (LLM) is a pretrained generative DNA sequence model with 117M parameters. 
It is derived from Mixtral-8x7B-v0.1 model, which was simplified for DNA: the number of layers and the hidden size were reduced. 
The model was pretrained using 24M coding DNA sequences (3000bp) from many different species (vertebrates, plants, bacteria, viruses, ...). 

## Model Architecture

Like Mixtral-8x7B-v0.1, it is a transformer model, with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
- Mixture of Experts

## Load the model from huggingface:

```
import torch
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("RaphaelMourad/Mistral-Codon-v1-117M", trust_remote_code=True) 
model = AutoModel.from_pretrained("RaphaelMourad/Mistral-Codon-v1-117M", trust_remote_code=True)
```

## Calculate the embedding of a coding sequence

```
codon_dna = "TGA TGA TTG GCG CGG CTA GGA TCG GCT"
inputs = tokenizer(codon_dna, return_tensors = 'pt')["input_ids"]
hidden_states = model(inputs)[0] # [1, sequence_length, 256]

# embedding with max pooling
embedding_max = torch.max(hidden_states[0], dim=0)[0]
print(embedding_max.shape) # expect to be 256
```

## Troubleshooting

Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.

## Notice

Mistral-Codon-v1-117M is a pretrained base model for coding DNA.

## Contact
 
Raphaël Mourad. raphael.mourad@univ-tlse3.fr