Update README.md
Browse files
README.md
CHANGED
@@ -30,15 +30,16 @@ The datasets I use are
|
|
30 |
import torch
|
31 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
32 |
|
33 |
-
def get_sentiment(
|
34 |
bert_dict = {}
|
35 |
-
vectors = tokenizer(
|
36 |
outputs = bert_model(**vectors).logits
|
37 |
-
probs = torch.nn.functional.softmax(outputs, dim = 1)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
MODEL_NAME = 'RashidNLP/Finance_Multi_Sentiment'
|
44 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -46,6 +47,6 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
46 |
bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 3).to(device)
|
47 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
48 |
|
49 |
-
get_sentiment("The stock market will struggle
|
50 |
|
51 |
```
|
|
|
30 |
import torch
|
31 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
32 |
|
33 |
+
def get_sentiment(sentences):
|
34 |
bert_dict = {}
|
35 |
+
vectors = tokenizer(sentences, padding = True, max_length = 65, return_tensors='pt').to(device)
|
36 |
outputs = bert_model(**vectors).logits
|
37 |
+
probs = torch.nn.functional.softmax(outputs, dim = 1)
|
38 |
+
for prob in probs:
|
39 |
+
bert_dict['neg'] = round(prob[0].item(), 3)
|
40 |
+
bert_dict['neu'] = round(prob[1].item(), 3)
|
41 |
+
bert_dict['pos'] = round(prob[2].item(), 3)
|
42 |
+
print (bert_dict)
|
43 |
|
44 |
MODEL_NAME = 'RashidNLP/Finance_Multi_Sentiment'
|
45 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
47 |
bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 3).to(device)
|
48 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
49 |
|
50 |
+
get_sentiment(["The stock market will struggle until debt ceiling is increased", "ChatGPT is boosting Microsoft's search engine market share"])
|
51 |
|
52 |
```
|