Re-Re commited on
Commit
3950fd4
·
verified ·
1 Parent(s): ac1cd18

Upload folder using huggingface_hub

Browse files
.summary/0/events.out.tfevents.1725611727.4ed841473a2d ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51b33602fc2d9b7793fc2a9349e7f3a559aa224a0cfa21bf34b85c1864d333d1
3
+ size 201167
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 7.25 +/- 2.80
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 11.86 +/- 6.87
19
  name: mean_reward
20
  verified: false
21
  ---
checkpoint_p0/best_000001219_4993024_reward_26.655.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a9876417ead596340c06307b52e741952dd2440efed40c0c06943e24c4e79fb
3
+ size 34929243
checkpoint_p0/checkpoint_000001172_4800512.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:335c248786681602b347c6fa27d673a423f57e3d12e8e07313cafd8d14757367
3
+ size 34929669
checkpoint_p0/checkpoint_000001222_5005312.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:515fd779429a9ca0c2a849321843ca16dcb6030f9fc11e272995e1ee79f95d34
3
+ size 34929669
config.json CHANGED
@@ -65,7 +65,7 @@
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
- "train_for_env_steps": 4000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
 
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 5000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1e2c3aab26fa111584d09ecf5179644dbff431a1ad3f8e9dc3c1e6964aec9247
3
- size 13552315
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c49871602fc5a116f18f6ade3e48d8382390811cf358f940d7063b0c919ff633
3
+ size 22845820
sf_log.txt CHANGED
@@ -1058,3 +1058,847 @@ main_loop: 1081.6875
1058
  [2024-09-06 08:29:55,437][01070] Avg episode rewards: #0: 13.847, true rewards: #0: 7.247
1059
  [2024-09-06 08:29:55,439][01070] Avg episode reward: 13.847, avg true_objective: 7.247
1060
  [2024-09-06 08:30:39,348][01070] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058
  [2024-09-06 08:29:55,437][01070] Avg episode rewards: #0: 13.847, true rewards: #0: 7.247
1059
  [2024-09-06 08:29:55,439][01070] Avg episode reward: 13.847, avg true_objective: 7.247
1060
  [2024-09-06 08:30:39,348][01070] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1061
+ [2024-09-06 08:30:46,004][01070] The model has been pushed to https://huggingface.co/Re-Re/rl_course_vizdoom_health_gathering_supreme
1062
+ [2024-09-06 08:35:27,232][01070] Environment doom_basic already registered, overwriting...
1063
+ [2024-09-06 08:35:27,234][01070] Environment doom_two_colors_easy already registered, overwriting...
1064
+ [2024-09-06 08:35:27,237][01070] Environment doom_two_colors_hard already registered, overwriting...
1065
+ [2024-09-06 08:35:27,238][01070] Environment doom_dm already registered, overwriting...
1066
+ [2024-09-06 08:35:27,240][01070] Environment doom_dwango5 already registered, overwriting...
1067
+ [2024-09-06 08:35:27,241][01070] Environment doom_my_way_home_flat_actions already registered, overwriting...
1068
+ [2024-09-06 08:35:27,242][01070] Environment doom_defend_the_center_flat_actions already registered, overwriting...
1069
+ [2024-09-06 08:35:27,243][01070] Environment doom_my_way_home already registered, overwriting...
1070
+ [2024-09-06 08:35:27,244][01070] Environment doom_deadly_corridor already registered, overwriting...
1071
+ [2024-09-06 08:35:27,245][01070] Environment doom_defend_the_center already registered, overwriting...
1072
+ [2024-09-06 08:35:27,246][01070] Environment doom_defend_the_line already registered, overwriting...
1073
+ [2024-09-06 08:35:27,247][01070] Environment doom_health_gathering already registered, overwriting...
1074
+ [2024-09-06 08:35:27,248][01070] Environment doom_health_gathering_supreme already registered, overwriting...
1075
+ [2024-09-06 08:35:27,250][01070] Environment doom_battle already registered, overwriting...
1076
+ [2024-09-06 08:35:27,251][01070] Environment doom_battle2 already registered, overwriting...
1077
+ [2024-09-06 08:35:27,252][01070] Environment doom_duel_bots already registered, overwriting...
1078
+ [2024-09-06 08:35:27,253][01070] Environment doom_deathmatch_bots already registered, overwriting...
1079
+ [2024-09-06 08:35:27,254][01070] Environment doom_duel already registered, overwriting...
1080
+ [2024-09-06 08:35:27,255][01070] Environment doom_deathmatch_full already registered, overwriting...
1081
+ [2024-09-06 08:35:27,256][01070] Environment doom_benchmark already registered, overwriting...
1082
+ [2024-09-06 08:35:27,257][01070] register_encoder_factory: <function make_vizdoom_encoder at 0x78dc5537e170>
1083
+ [2024-09-06 08:35:27,282][01070] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1084
+ [2024-09-06 08:35:27,284][01070] Overriding arg 'train_for_env_steps' with value 5000000 passed from command line
1085
+ [2024-09-06 08:35:27,291][01070] Experiment dir /content/train_dir/default_experiment already exists!
1086
+ [2024-09-06 08:35:27,293][01070] Resuming existing experiment from /content/train_dir/default_experiment...
1087
+ [2024-09-06 08:35:27,295][01070] Weights and Biases integration disabled
1088
+ [2024-09-06 08:35:27,298][01070] Environment var CUDA_VISIBLE_DEVICES is 0
1089
+
1090
+ [2024-09-06 08:35:29,357][01070] Starting experiment with the following configuration:
1091
+ help=False
1092
+ algo=APPO
1093
+ env=doom_health_gathering_supreme
1094
+ experiment=default_experiment
1095
+ train_dir=/content/train_dir
1096
+ restart_behavior=resume
1097
+ device=gpu
1098
+ seed=None
1099
+ num_policies=1
1100
+ async_rl=True
1101
+ serial_mode=False
1102
+ batched_sampling=False
1103
+ num_batches_to_accumulate=2
1104
+ worker_num_splits=2
1105
+ policy_workers_per_policy=1
1106
+ max_policy_lag=1000
1107
+ num_workers=8
1108
+ num_envs_per_worker=4
1109
+ batch_size=1024
1110
+ num_batches_per_epoch=1
1111
+ num_epochs=1
1112
+ rollout=32
1113
+ recurrence=32
1114
+ shuffle_minibatches=False
1115
+ gamma=0.99
1116
+ reward_scale=1.0
1117
+ reward_clip=1000.0
1118
+ value_bootstrap=False
1119
+ normalize_returns=True
1120
+ exploration_loss_coeff=0.001
1121
+ value_loss_coeff=0.5
1122
+ kl_loss_coeff=0.0
1123
+ exploration_loss=symmetric_kl
1124
+ gae_lambda=0.95
1125
+ ppo_clip_ratio=0.1
1126
+ ppo_clip_value=0.2
1127
+ with_vtrace=False
1128
+ vtrace_rho=1.0
1129
+ vtrace_c=1.0
1130
+ optimizer=adam
1131
+ adam_eps=1e-06
1132
+ adam_beta1=0.9
1133
+ adam_beta2=0.999
1134
+ max_grad_norm=4.0
1135
+ learning_rate=0.0001
1136
+ lr_schedule=constant
1137
+ lr_schedule_kl_threshold=0.008
1138
+ lr_adaptive_min=1e-06
1139
+ lr_adaptive_max=0.01
1140
+ obs_subtract_mean=0.0
1141
+ obs_scale=255.0
1142
+ normalize_input=True
1143
+ normalize_input_keys=None
1144
+ decorrelate_experience_max_seconds=0
1145
+ decorrelate_envs_on_one_worker=True
1146
+ actor_worker_gpus=[]
1147
+ set_workers_cpu_affinity=True
1148
+ force_envs_single_thread=False
1149
+ default_niceness=0
1150
+ log_to_file=True
1151
+ experiment_summaries_interval=10
1152
+ flush_summaries_interval=30
1153
+ stats_avg=100
1154
+ summaries_use_frameskip=True
1155
+ heartbeat_interval=20
1156
+ heartbeat_reporting_interval=600
1157
+ train_for_env_steps=5000000
1158
+ train_for_seconds=10000000000
1159
+ save_every_sec=120
1160
+ keep_checkpoints=2
1161
+ load_checkpoint_kind=latest
1162
+ save_milestones_sec=-1
1163
+ save_best_every_sec=5
1164
+ save_best_metric=reward
1165
+ save_best_after=100000
1166
+ benchmark=False
1167
+ encoder_mlp_layers=[512, 512]
1168
+ encoder_conv_architecture=convnet_simple
1169
+ encoder_conv_mlp_layers=[512]
1170
+ use_rnn=True
1171
+ rnn_size=512
1172
+ rnn_type=gru
1173
+ rnn_num_layers=1
1174
+ decoder_mlp_layers=[]
1175
+ nonlinearity=elu
1176
+ policy_initialization=orthogonal
1177
+ policy_init_gain=1.0
1178
+ actor_critic_share_weights=True
1179
+ adaptive_stddev=True
1180
+ continuous_tanh_scale=0.0
1181
+ initial_stddev=1.0
1182
+ use_env_info_cache=False
1183
+ env_gpu_actions=False
1184
+ env_gpu_observations=True
1185
+ env_frameskip=4
1186
+ env_framestack=1
1187
+ pixel_format=CHW
1188
+ use_record_episode_statistics=False
1189
+ with_wandb=False
1190
+ wandb_user=None
1191
+ wandb_project=sample_factory
1192
+ wandb_group=None
1193
+ wandb_job_type=SF
1194
+ wandb_tags=[]
1195
+ with_pbt=False
1196
+ pbt_mix_policies_in_one_env=True
1197
+ pbt_period_env_steps=5000000
1198
+ pbt_start_mutation=20000000
1199
+ pbt_replace_fraction=0.3
1200
+ pbt_mutation_rate=0.15
1201
+ pbt_replace_reward_gap=0.1
1202
+ pbt_replace_reward_gap_absolute=1e-06
1203
+ pbt_optimize_gamma=False
1204
+ pbt_target_objective=true_objective
1205
+ pbt_perturb_min=1.1
1206
+ pbt_perturb_max=1.5
1207
+ num_agents=-1
1208
+ num_humans=0
1209
+ num_bots=-1
1210
+ start_bot_difficulty=None
1211
+ timelimit=None
1212
+ res_w=128
1213
+ res_h=72
1214
+ wide_aspect_ratio=False
1215
+ eval_env_frameskip=1
1216
+ fps=35
1217
+ command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
1218
+ cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
1219
+ git_hash=unknown
1220
+ git_repo_name=not a git repository
1221
+ [2024-09-06 08:35:29,359][01070] Saving configuration to /content/train_dir/default_experiment/config.json...
1222
+ [2024-09-06 08:35:29,362][01070] Rollout worker 0 uses device cpu
1223
+ [2024-09-06 08:35:29,364][01070] Rollout worker 1 uses device cpu
1224
+ [2024-09-06 08:35:29,365][01070] Rollout worker 2 uses device cpu
1225
+ [2024-09-06 08:35:29,366][01070] Rollout worker 3 uses device cpu
1226
+ [2024-09-06 08:35:29,368][01070] Rollout worker 4 uses device cpu
1227
+ [2024-09-06 08:35:29,369][01070] Rollout worker 5 uses device cpu
1228
+ [2024-09-06 08:35:29,370][01070] Rollout worker 6 uses device cpu
1229
+ [2024-09-06 08:35:29,372][01070] Rollout worker 7 uses device cpu
1230
+ [2024-09-06 08:35:29,446][01070] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1231
+ [2024-09-06 08:35:29,447][01070] InferenceWorker_p0-w0: min num requests: 2
1232
+ [2024-09-06 08:35:29,485][01070] Starting all processes...
1233
+ [2024-09-06 08:35:29,486][01070] Starting process learner_proc0
1234
+ [2024-09-06 08:35:29,535][01070] Starting all processes...
1235
+ [2024-09-06 08:35:29,540][01070] Starting process inference_proc0-0
1236
+ [2024-09-06 08:35:29,541][01070] Starting process rollout_proc0
1237
+ [2024-09-06 08:35:29,541][01070] Starting process rollout_proc1
1238
+ [2024-09-06 08:35:29,541][01070] Starting process rollout_proc2
1239
+ [2024-09-06 08:35:29,541][01070] Starting process rollout_proc3
1240
+ [2024-09-06 08:35:29,541][01070] Starting process rollout_proc4
1241
+ [2024-09-06 08:35:29,541][01070] Starting process rollout_proc5
1242
+ [2024-09-06 08:35:29,736][01070] Starting process rollout_proc7
1243
+ [2024-09-06 08:35:29,753][01070] Starting process rollout_proc6
1244
+ [2024-09-06 08:35:43,326][19093] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1245
+ [2024-09-06 08:35:43,327][19093] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
1246
+ [2024-09-06 08:35:43,391][19093] Num visible devices: 1
1247
+ [2024-09-06 08:35:43,432][19093] Starting seed is not provided
1248
+ [2024-09-06 08:35:43,433][19093] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1249
+ [2024-09-06 08:35:43,434][19093] Initializing actor-critic model on device cuda:0
1250
+ [2024-09-06 08:35:43,434][19093] RunningMeanStd input shape: (3, 72, 128)
1251
+ [2024-09-06 08:35:43,436][19093] RunningMeanStd input shape: (1,)
1252
+ [2024-09-06 08:35:43,522][19093] ConvEncoder: input_channels=3
1253
+ [2024-09-06 08:35:44,545][19093] Conv encoder output size: 512
1254
+ [2024-09-06 08:35:44,548][19093] Policy head output size: 512
1255
+ [2024-09-06 08:35:44,679][19093] Created Actor Critic model with architecture:
1256
+ [2024-09-06 08:35:44,680][19093] ActorCriticSharedWeights(
1257
+ (obs_normalizer): ObservationNormalizer(
1258
+ (running_mean_std): RunningMeanStdDictInPlace(
1259
+ (running_mean_std): ModuleDict(
1260
+ (obs): RunningMeanStdInPlace()
1261
+ )
1262
+ )
1263
+ )
1264
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
1265
+ (encoder): VizdoomEncoder(
1266
+ (basic_encoder): ConvEncoder(
1267
+ (enc): RecursiveScriptModule(
1268
+ original_name=ConvEncoderImpl
1269
+ (conv_head): RecursiveScriptModule(
1270
+ original_name=Sequential
1271
+ (0): RecursiveScriptModule(original_name=Conv2d)
1272
+ (1): RecursiveScriptModule(original_name=ELU)
1273
+ (2): RecursiveScriptModule(original_name=Conv2d)
1274
+ (3): RecursiveScriptModule(original_name=ELU)
1275
+ (4): RecursiveScriptModule(original_name=Conv2d)
1276
+ (5): RecursiveScriptModule(original_name=ELU)
1277
+ )
1278
+ (mlp_layers): RecursiveScriptModule(
1279
+ original_name=Sequential
1280
+ (0): RecursiveScriptModule(original_name=Linear)
1281
+ (1): RecursiveScriptModule(original_name=ELU)
1282
+ )
1283
+ )
1284
+ )
1285
+ )
1286
+ (core): ModelCoreRNN(
1287
+ (core): GRU(512, 512)
1288
+ )
1289
+ (decoder): MlpDecoder(
1290
+ (mlp): Identity()
1291
+ )
1292
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
1293
+ (action_parameterization): ActionParameterizationDefault(
1294
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
1295
+ )
1296
+ )
1297
+ [2024-09-06 08:35:45,399][19110] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1298
+ [2024-09-06 08:35:45,404][19110] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
1299
+ [2024-09-06 08:35:45,627][19116] Worker 5 uses CPU cores [1]
1300
+ [2024-09-06 08:35:45,628][19113] Worker 2 uses CPU cores [0]
1301
+ [2024-09-06 08:35:45,638][19110] Num visible devices: 1
1302
+ [2024-09-06 08:35:45,693][19114] Worker 4 uses CPU cores [0]
1303
+ [2024-09-06 08:35:45,750][19093] Using optimizer <class 'torch.optim.adam.Adam'>
1304
+ [2024-09-06 08:35:45,925][19111] Worker 1 uses CPU cores [1]
1305
+ [2024-09-06 08:35:45,964][19117] Worker 7 uses CPU cores [1]
1306
+ [2024-09-06 08:35:46,011][19118] Worker 6 uses CPU cores [0]
1307
+ [2024-09-06 08:35:46,116][19112] Worker 0 uses CPU cores [0]
1308
+ [2024-09-06 08:35:46,119][19115] Worker 3 uses CPU cores [1]
1309
+ [2024-09-06 08:35:46,846][19093] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
1310
+ [2024-09-06 08:35:46,893][19093] Loading model from checkpoint
1311
+ [2024-09-06 08:35:46,895][19093] Loaded experiment state at self.train_step=978, self.env_steps=4005888
1312
+ [2024-09-06 08:35:46,896][19093] Initialized policy 0 weights for model version 978
1313
+ [2024-09-06 08:35:46,906][19093] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1314
+ [2024-09-06 08:35:46,914][19093] LearnerWorker_p0 finished initialization!
1315
+ [2024-09-06 08:35:47,083][19110] RunningMeanStd input shape: (3, 72, 128)
1316
+ [2024-09-06 08:35:47,085][19110] RunningMeanStd input shape: (1,)
1317
+ [2024-09-06 08:35:47,103][19110] ConvEncoder: input_channels=3
1318
+ [2024-09-06 08:35:47,256][19110] Conv encoder output size: 512
1319
+ [2024-09-06 08:35:47,257][19110] Policy head output size: 512
1320
+ [2024-09-06 08:35:47,299][01070] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4005888. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1321
+ [2024-09-06 08:35:47,343][01070] Inference worker 0-0 is ready!
1322
+ [2024-09-06 08:35:47,345][01070] All inference workers are ready! Signal rollout workers to start!
1323
+ [2024-09-06 08:35:47,666][19115] Doom resolution: 160x120, resize resolution: (128, 72)
1324
+ [2024-09-06 08:35:47,759][19117] Doom resolution: 160x120, resize resolution: (128, 72)
1325
+ [2024-09-06 08:35:47,841][19111] Doom resolution: 160x120, resize resolution: (128, 72)
1326
+ [2024-09-06 08:35:47,847][19116] Doom resolution: 160x120, resize resolution: (128, 72)
1327
+ [2024-09-06 08:35:47,859][19118] Doom resolution: 160x120, resize resolution: (128, 72)
1328
+ [2024-09-06 08:35:47,902][19114] Doom resolution: 160x120, resize resolution: (128, 72)
1329
+ [2024-09-06 08:35:47,911][19113] Doom resolution: 160x120, resize resolution: (128, 72)
1330
+ [2024-09-06 08:35:47,923][19112] Doom resolution: 160x120, resize resolution: (128, 72)
1331
+ [2024-09-06 08:35:49,437][01070] Heartbeat connected on Batcher_0
1332
+ [2024-09-06 08:35:49,445][01070] Heartbeat connected on LearnerWorker_p0
1333
+ [2024-09-06 08:35:49,476][01070] Heartbeat connected on InferenceWorker_p0-w0
1334
+ [2024-09-06 08:35:49,689][19112] Decorrelating experience for 0 frames...
1335
+ [2024-09-06 08:35:49,691][19113] Decorrelating experience for 0 frames...
1336
+ [2024-09-06 08:35:49,916][19115] Decorrelating experience for 0 frames...
1337
+ [2024-09-06 08:35:49,947][19117] Decorrelating experience for 0 frames...
1338
+ [2024-09-06 08:35:50,051][19111] Decorrelating experience for 0 frames...
1339
+ [2024-09-06 08:35:50,057][19116] Decorrelating experience for 0 frames...
1340
+ [2024-09-06 08:35:50,424][19112] Decorrelating experience for 32 frames...
1341
+ [2024-09-06 08:35:51,332][19117] Decorrelating experience for 32 frames...
1342
+ [2024-09-06 08:35:51,378][19115] Decorrelating experience for 32 frames...
1343
+ [2024-09-06 08:35:51,423][19111] Decorrelating experience for 32 frames...
1344
+ [2024-09-06 08:35:51,456][19114] Decorrelating experience for 0 frames...
1345
+ [2024-09-06 08:35:51,798][19113] Decorrelating experience for 32 frames...
1346
+ [2024-09-06 08:35:52,103][19112] Decorrelating experience for 64 frames...
1347
+ [2024-09-06 08:35:52,299][01070] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1348
+ [2024-09-06 08:35:52,385][19118] Decorrelating experience for 0 frames...
1349
+ [2024-09-06 08:35:52,773][19116] Decorrelating experience for 32 frames...
1350
+ [2024-09-06 08:35:53,059][19117] Decorrelating experience for 64 frames...
1351
+ [2024-09-06 08:35:53,088][19115] Decorrelating experience for 64 frames...
1352
+ [2024-09-06 08:35:53,163][19111] Decorrelating experience for 64 frames...
1353
+ [2024-09-06 08:35:53,227][19114] Decorrelating experience for 32 frames...
1354
+ [2024-09-06 08:35:54,004][19116] Decorrelating experience for 64 frames...
1355
+ [2024-09-06 08:35:54,080][19111] Decorrelating experience for 96 frames...
1356
+ [2024-09-06 08:35:54,169][01070] Heartbeat connected on RolloutWorker_w1
1357
+ [2024-09-06 08:35:54,232][19113] Decorrelating experience for 64 frames...
1358
+ [2024-09-06 08:35:54,438][19118] Decorrelating experience for 32 frames...
1359
+ [2024-09-06 08:35:54,884][19114] Decorrelating experience for 64 frames...
1360
+ [2024-09-06 08:35:55,752][19112] Decorrelating experience for 96 frames...
1361
+ [2024-09-06 08:35:55,972][01070] Heartbeat connected on RolloutWorker_w0
1362
+ [2024-09-06 08:35:56,002][19113] Decorrelating experience for 96 frames...
1363
+ [2024-09-06 08:35:56,247][01070] Heartbeat connected on RolloutWorker_w2
1364
+ [2024-09-06 08:35:56,489][19118] Decorrelating experience for 64 frames...
1365
+ [2024-09-06 08:35:56,773][19114] Decorrelating experience for 96 frames...
1366
+ [2024-09-06 08:35:57,299][01070] Heartbeat connected on RolloutWorker_w4
1367
+ [2024-09-06 08:35:57,303][01070] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 71.2. Samples: 712. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1368
+ [2024-09-06 08:35:57,307][01070] Avg episode reward: [(0, '5.702')]
1369
+ [2024-09-06 08:35:57,398][19116] Decorrelating experience for 96 frames...
1370
+ [2024-09-06 08:35:57,706][01070] Heartbeat connected on RolloutWorker_w5
1371
+ [2024-09-06 08:35:57,841][19117] Decorrelating experience for 96 frames...
1372
+ [2024-09-06 08:35:58,244][01070] Heartbeat connected on RolloutWorker_w7
1373
+ [2024-09-06 08:36:00,233][19093] Signal inference workers to stop experience collection...
1374
+ [2024-09-06 08:36:00,248][19110] InferenceWorker_p0-w0: stopping experience collection
1375
+ [2024-09-06 08:36:00,307][19118] Decorrelating experience for 96 frames...
1376
+ [2024-09-06 08:36:00,409][01070] Heartbeat connected on RolloutWorker_w6
1377
+ [2024-09-06 08:36:00,811][19115] Decorrelating experience for 96 frames...
1378
+ [2024-09-06 08:36:00,904][01070] Heartbeat connected on RolloutWorker_w3
1379
+ [2024-09-06 08:36:02,107][19093] Signal inference workers to resume experience collection...
1380
+ [2024-09-06 08:36:02,108][19110] InferenceWorker_p0-w0: resuming experience collection
1381
+ [2024-09-06 08:36:02,300][01070] Fps is (10 sec: 409.6, 60 sec: 273.0, 300 sec: 273.0). Total num frames: 4009984. Throughput: 0: 147.9. Samples: 2218. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
1382
+ [2024-09-06 08:36:02,302][01070] Avg episode reward: [(0, '4.701')]
1383
+ [2024-09-06 08:36:07,302][01070] Fps is (10 sec: 1638.4, 60 sec: 819.0, 300 sec: 819.0). Total num frames: 4022272. Throughput: 0: 228.8. Samples: 4576. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1384
+ [2024-09-06 08:36:07,305][01070] Avg episode reward: [(0, '6.521')]
1385
+ [2024-09-06 08:36:12,073][19110] Updated weights for policy 0, policy_version 988 (0.0020)
1386
+ [2024-09-06 08:36:12,300][01070] Fps is (10 sec: 3686.1, 60 sec: 1638.3, 300 sec: 1638.3). Total num frames: 4046848. Throughput: 0: 391.6. Samples: 9790. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1387
+ [2024-09-06 08:36:12,306][01070] Avg episode reward: [(0, '11.236')]
1388
+ [2024-09-06 08:36:17,299][01070] Fps is (10 sec: 4507.3, 60 sec: 2048.0, 300 sec: 2048.0). Total num frames: 4067328. Throughput: 0: 445.7. Samples: 13370. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1389
+ [2024-09-06 08:36:17,305][01070] Avg episode reward: [(0, '12.296')]
1390
+ [2024-09-06 08:36:22,299][01070] Fps is (10 sec: 3687.1, 60 sec: 2223.5, 300 sec: 2223.5). Total num frames: 4083712. Throughput: 0: 556.9. Samples: 19492. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1391
+ [2024-09-06 08:36:22,301][01070] Avg episode reward: [(0, '14.420')]
1392
+ [2024-09-06 08:36:22,439][19110] Updated weights for policy 0, policy_version 998 (0.0030)
1393
+ [2024-09-06 08:36:27,299][01070] Fps is (10 sec: 3686.3, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 4104192. Throughput: 0: 602.8. Samples: 24114. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
1394
+ [2024-09-06 08:36:27,301][01070] Avg episode reward: [(0, '16.055')]
1395
+ [2024-09-06 08:36:32,188][19110] Updated weights for policy 0, policy_version 1008 (0.0021)
1396
+ [2024-09-06 08:36:32,299][01070] Fps is (10 sec: 4505.6, 60 sec: 2730.7, 300 sec: 2730.7). Total num frames: 4128768. Throughput: 0: 615.9. Samples: 27716. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
1397
+ [2024-09-06 08:36:32,305][01070] Avg episode reward: [(0, '18.102')]
1398
+ [2024-09-06 08:36:32,309][19093] Saving new best policy, reward=18.102!
1399
+ [2024-09-06 08:36:37,300][01070] Fps is (10 sec: 4505.2, 60 sec: 2867.1, 300 sec: 2867.1). Total num frames: 4149248. Throughput: 0: 773.5. Samples: 34808. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1400
+ [2024-09-06 08:36:37,305][01070] Avg episode reward: [(0, '19.063')]
1401
+ [2024-09-06 08:36:37,312][19093] Saving new best policy, reward=19.063!
1402
+ [2024-09-06 08:36:42,299][01070] Fps is (10 sec: 3276.7, 60 sec: 2829.9, 300 sec: 2829.9). Total num frames: 4161536. Throughput: 0: 852.4. Samples: 39066. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1403
+ [2024-09-06 08:36:42,303][01070] Avg episode reward: [(0, '20.446')]
1404
+ [2024-09-06 08:36:42,306][19093] Saving new best policy, reward=20.446!
1405
+ [2024-09-06 08:36:43,965][19110] Updated weights for policy 0, policy_version 1018 (0.0034)
1406
+ [2024-09-06 08:36:47,299][01070] Fps is (10 sec: 3277.1, 60 sec: 2935.5, 300 sec: 2935.5). Total num frames: 4182016. Throughput: 0: 879.8. Samples: 41808. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1407
+ [2024-09-06 08:36:47,305][01070] Avg episode reward: [(0, '21.840')]
1408
+ [2024-09-06 08:36:47,316][19093] Saving new best policy, reward=21.840!
1409
+ [2024-09-06 08:36:52,299][01070] Fps is (10 sec: 4505.7, 60 sec: 3345.1, 300 sec: 3087.8). Total num frames: 4206592. Throughput: 0: 982.8. Samples: 48798. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
1410
+ [2024-09-06 08:36:52,304][01070] Avg episode reward: [(0, '21.047')]
1411
+ [2024-09-06 08:36:52,709][19110] Updated weights for policy 0, policy_version 1028 (0.0017)
1412
+ [2024-09-06 08:36:57,304][01070] Fps is (10 sec: 4094.0, 60 sec: 3618.1, 300 sec: 3101.0). Total num frames: 4222976. Throughput: 0: 987.4. Samples: 54226. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1413
+ [2024-09-06 08:36:57,306][01070] Avg episode reward: [(0, '20.552')]
1414
+ [2024-09-06 08:37:02,299][01070] Fps is (10 sec: 2457.6, 60 sec: 3686.5, 300 sec: 3003.7). Total num frames: 4231168. Throughput: 0: 944.6. Samples: 55878. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1415
+ [2024-09-06 08:37:02,301][01070] Avg episode reward: [(0, '21.311')]
1416
+ [2024-09-06 08:37:07,058][19110] Updated weights for policy 0, policy_version 1038 (0.0038)
1417
+ [2024-09-06 08:37:07,299][01070] Fps is (10 sec: 2868.7, 60 sec: 3823.2, 300 sec: 3072.0). Total num frames: 4251648. Throughput: 0: 897.5. Samples: 59880. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1418
+ [2024-09-06 08:37:07,301][01070] Avg episode reward: [(0, '20.332')]
1419
+ [2024-09-06 08:37:12,299][01070] Fps is (10 sec: 4096.0, 60 sec: 3754.8, 300 sec: 3132.2). Total num frames: 4272128. Throughput: 0: 950.4. Samples: 66884. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1420
+ [2024-09-06 08:37:12,301][01070] Avg episode reward: [(0, '19.661')]
1421
+ [2024-09-06 08:37:17,299][01070] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3140.3). Total num frames: 4288512. Throughput: 0: 928.7. Samples: 69506. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1422
+ [2024-09-06 08:37:17,302][01070] Avg episode reward: [(0, '20.777')]
1423
+ [2024-09-06 08:37:18,168][19110] Updated weights for policy 0, policy_version 1048 (0.0027)
1424
+ [2024-09-06 08:37:22,299][01070] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3190.6). Total num frames: 4308992. Throughput: 0: 873.3. Samples: 74104. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1425
+ [2024-09-06 08:37:22,304][01070] Avg episode reward: [(0, '21.018')]
1426
+ [2024-09-06 08:37:27,299][01070] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3276.8). Total num frames: 4333568. Throughput: 0: 938.8. Samples: 81312. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1427
+ [2024-09-06 08:37:27,300][19110] Updated weights for policy 0, policy_version 1058 (0.0031)
1428
+ [2024-09-06 08:37:27,301][01070] Avg episode reward: [(0, '21.381')]
1429
+ [2024-09-06 08:37:27,314][19093] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001058_4333568.pth...
1430
+ [2024-09-06 08:37:27,438][19093] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000975_3993600.pth
1431
+ [2024-09-06 08:37:32,300][01070] Fps is (10 sec: 4095.5, 60 sec: 3686.3, 300 sec: 3276.8). Total num frames: 4349952. Throughput: 0: 954.6. Samples: 84768. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1432
+ [2024-09-06 08:37:32,306][01070] Avg episode reward: [(0, '20.498')]
1433
+ [2024-09-06 08:37:37,299][01070] Fps is (10 sec: 3276.8, 60 sec: 3618.2, 300 sec: 3276.8). Total num frames: 4366336. Throughput: 0: 899.8. Samples: 89288. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1434
+ [2024-09-06 08:37:37,302][01070] Avg episode reward: [(0, '20.356')]
1435
+ [2024-09-06 08:37:38,951][19110] Updated weights for policy 0, policy_version 1068 (0.0030)
1436
+ [2024-09-06 08:37:42,302][01070] Fps is (10 sec: 3685.8, 60 sec: 3754.5, 300 sec: 3312.3). Total num frames: 4386816. Throughput: 0: 918.0. Samples: 95532. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1437
+ [2024-09-06 08:37:42,306][01070] Avg episode reward: [(0, '18.966')]
1438
+ [2024-09-06 08:37:47,299][01070] Fps is (10 sec: 4505.6, 60 sec: 3823.0, 300 sec: 3379.2). Total num frames: 4411392. Throughput: 0: 960.9. Samples: 99118. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1439
+ [2024-09-06 08:37:47,303][01070] Avg episode reward: [(0, '19.345')]
1440
+ [2024-09-06 08:37:48,240][19110] Updated weights for policy 0, policy_version 1078 (0.0013)
1441
+ [2024-09-06 08:37:52,299][01070] Fps is (10 sec: 3687.5, 60 sec: 3618.1, 300 sec: 3342.3). Total num frames: 4423680. Throughput: 0: 989.1. Samples: 104388. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1442
+ [2024-09-06 08:37:52,301][01070] Avg episode reward: [(0, '19.443')]
1443
+ [2024-09-06 08:37:57,299][01070] Fps is (10 sec: 3686.4, 60 sec: 3755.0, 300 sec: 3402.8). Total num frames: 4448256. Throughput: 0: 957.7. Samples: 109982. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1444
+ [2024-09-06 08:37:57,301][01070] Avg episode reward: [(0, '20.099')]
1445
+ [2024-09-06 08:37:59,151][19110] Updated weights for policy 0, policy_version 1088 (0.0024)
1446
+ [2024-09-06 08:38:02,299][01070] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3428.5). Total num frames: 4468736. Throughput: 0: 978.0. Samples: 113514. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1447
+ [2024-09-06 08:38:02,306][01070] Avg episode reward: [(0, '20.360')]
1448
+ [2024-09-06 08:38:07,299][01070] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3423.1). Total num frames: 4485120. Throughput: 0: 1019.1. Samples: 119964. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1449
+ [2024-09-06 08:38:07,302][01070] Avg episode reward: [(0, '20.240')]
1450
+ [2024-09-06 08:38:10,312][19110] Updated weights for policy 0, policy_version 1098 (0.0022)
1451
+ [2024-09-06 08:38:12,299][01070] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3418.0). Total num frames: 4501504. Throughput: 0: 953.8. Samples: 124232. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1452
+ [2024-09-06 08:38:12,304][01070] Avg episode reward: [(0, '19.557')]
1453
+ [2024-09-06 08:38:17,299][01070] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3467.9). Total num frames: 4526080. Throughput: 0: 954.6. Samples: 127726. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1454
+ [2024-09-06 08:38:17,301][01070] Avg episode reward: [(0, '20.239')]
1455
+ [2024-09-06 08:38:19,439][19110] Updated weights for policy 0, policy_version 1108 (0.0041)
1456
+ [2024-09-06 08:38:22,301][01070] Fps is (10 sec: 4504.4, 60 sec: 3959.3, 300 sec: 3488.1). Total num frames: 4546560. Throughput: 0: 1011.7. Samples: 134818. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1457
+ [2024-09-06 08:38:22,304][01070] Avg episode reward: [(0, '20.506')]
1458
+ [2024-09-06 08:38:27,299][01070] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3481.6). Total num frames: 4562944. Throughput: 0: 977.9. Samples: 139534. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1459
+ [2024-09-06 08:38:27,303][01070] Avg episode reward: [(0, '20.585')]
1460
+ [2024-09-06 08:38:31,030][19110] Updated weights for policy 0, policy_version 1118 (0.0046)
1461
+ [2024-09-06 08:38:32,299][01070] Fps is (10 sec: 3687.4, 60 sec: 3891.3, 300 sec: 3500.2). Total num frames: 4583424. Throughput: 0: 953.9. Samples: 142044. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1462
+ [2024-09-06 08:38:32,306][01070] Avg episode reward: [(0, '20.308')]
1463
+ [2024-09-06 08:38:37,299][01070] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3541.8). Total num frames: 4608000. Throughput: 0: 993.6. Samples: 149102. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1464
+ [2024-09-06 08:38:37,304][01070] Avg episode reward: [(0, '21.252')]
1465
+ [2024-09-06 08:38:40,626][19110] Updated weights for policy 0, policy_version 1128 (0.0030)
1466
+ [2024-09-06 08:38:42,299][01070] Fps is (10 sec: 4096.0, 60 sec: 3959.7, 300 sec: 3534.3). Total num frames: 4624384. Throughput: 0: 994.4. Samples: 154730. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1467
+ [2024-09-06 08:38:42,303][01070] Avg episode reward: [(0, '20.914')]
1468
+ [2024-09-06 08:38:47,299][01070] Fps is (10 sec: 3276.7, 60 sec: 3822.9, 300 sec: 3527.1). Total num frames: 4640768. Throughput: 0: 963.1. Samples: 156854. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1469
+ [2024-09-06 08:38:47,307][01070] Avg episode reward: [(0, '20.844')]
1470
+ [2024-09-06 08:38:51,335][19110] Updated weights for policy 0, policy_version 1138 (0.0028)
1471
+ [2024-09-06 08:38:52,299][01070] Fps is (10 sec: 4095.9, 60 sec: 4027.7, 300 sec: 3564.6). Total num frames: 4665344. Throughput: 0: 963.3. Samples: 163312. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1472
+ [2024-09-06 08:38:52,301][01070] Avg episode reward: [(0, '22.493')]
1473
+ [2024-09-06 08:38:52,304][19093] Saving new best policy, reward=22.493!
1474
+ [2024-09-06 08:38:57,299][01070] Fps is (10 sec: 4505.7, 60 sec: 3959.5, 300 sec: 3578.6). Total num frames: 4685824. Throughput: 0: 1017.3. Samples: 170010. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1475
+ [2024-09-06 08:38:57,305][01070] Avg episode reward: [(0, '21.806')]
1476
+ [2024-09-06 08:39:02,299][01070] Fps is (10 sec: 3276.9, 60 sec: 3822.9, 300 sec: 3549.9). Total num frames: 4698112. Throughput: 0: 985.0. Samples: 172050. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1477
+ [2024-09-06 08:39:02,300][01070] Avg episode reward: [(0, '22.885')]
1478
+ [2024-09-06 08:39:02,305][19093] Saving new best policy, reward=22.885!
1479
+ [2024-09-06 08:39:02,950][19110] Updated weights for policy 0, policy_version 1148 (0.0035)
1480
+ [2024-09-06 08:39:07,299][01070] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3563.5). Total num frames: 4718592. Throughput: 0: 948.3. Samples: 177488. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1481
+ [2024-09-06 08:39:07,301][01070] Avg episode reward: [(0, '23.190')]
1482
+ [2024-09-06 08:39:07,318][19093] Saving new best policy, reward=23.190!
1483
+ [2024-09-06 08:39:11,864][19110] Updated weights for policy 0, policy_version 1158 (0.0024)
1484
+ [2024-09-06 08:39:12,299][01070] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3596.5). Total num frames: 4743168. Throughput: 0: 994.3. Samples: 184276. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1485
+ [2024-09-06 08:39:12,303][01070] Avg episode reward: [(0, '23.069')]
1486
+ [2024-09-06 08:39:17,299][01070] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3588.9). Total num frames: 4759552. Throughput: 0: 1001.5. Samples: 187112. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1487
+ [2024-09-06 08:39:17,301][01070] Avg episode reward: [(0, '22.125')]
1488
+ [2024-09-06 08:39:22,299][01070] Fps is (10 sec: 3276.8, 60 sec: 3823.1, 300 sec: 3581.6). Total num frames: 4775936. Throughput: 0: 941.3. Samples: 191462. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
1489
+ [2024-09-06 08:39:22,303][01070] Avg episode reward: [(0, '21.027')]
1490
+ [2024-09-06 08:39:23,456][19110] Updated weights for policy 0, policy_version 1168 (0.0022)
1491
+ [2024-09-06 08:39:27,299][01070] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3611.9). Total num frames: 4800512. Throughput: 0: 973.6. Samples: 198540. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1492
+ [2024-09-06 08:39:27,301][01070] Avg episode reward: [(0, '19.180')]
1493
+ [2024-09-06 08:39:27,314][19093] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001172_4800512.pth...
1494
+ [2024-09-06 08:39:27,463][19093] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth
1495
+ [2024-09-06 08:39:32,300][01070] Fps is (10 sec: 4504.9, 60 sec: 3959.4, 300 sec: 3622.7). Total num frames: 4820992. Throughput: 0: 1000.5. Samples: 201878. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1496
+ [2024-09-06 08:39:32,303][01070] Avg episode reward: [(0, '20.069')]
1497
+ [2024-09-06 08:39:33,797][19110] Updated weights for policy 0, policy_version 1178 (0.0024)
1498
+ [2024-09-06 08:39:37,299][01070] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3597.4). Total num frames: 4833280. Throughput: 0: 959.6. Samples: 206492. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1499
+ [2024-09-06 08:39:37,301][01070] Avg episode reward: [(0, '19.170')]
1500
+ [2024-09-06 08:39:42,299][01070] Fps is (10 sec: 3687.0, 60 sec: 3891.2, 300 sec: 3625.4). Total num frames: 4857856. Throughput: 0: 947.1. Samples: 212628. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
1501
+ [2024-09-06 08:39:42,306][01070] Avg episode reward: [(0, '20.382')]
1502
+ [2024-09-06 08:39:43,732][19110] Updated weights for policy 0, policy_version 1188 (0.0024)
1503
+ [2024-09-06 08:39:47,299][01070] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3635.2). Total num frames: 4878336. Throughput: 0: 980.8. Samples: 216188. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1504
+ [2024-09-06 08:39:47,313][01070] Avg episode reward: [(0, '21.641')]
1505
+ [2024-09-06 08:39:52,299][01070] Fps is (10 sec: 3686.4, 60 sec: 3823.0, 300 sec: 3627.9). Total num frames: 4894720. Throughput: 0: 984.4. Samples: 221786. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1506
+ [2024-09-06 08:39:52,301][01070] Avg episode reward: [(0, '21.803')]
1507
+ [2024-09-06 08:39:55,248][19110] Updated weights for policy 0, policy_version 1198 (0.0031)
1508
+ [2024-09-06 08:39:57,299][01070] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3637.2). Total num frames: 4915200. Throughput: 0: 951.6. Samples: 227098. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1509
+ [2024-09-06 08:39:57,304][01070] Avg episode reward: [(0, '22.439')]
1510
+ [2024-09-06 08:40:02,299][01070] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3662.3). Total num frames: 4939776. Throughput: 0: 968.4. Samples: 230692. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1511
+ [2024-09-06 08:40:02,305][01070] Avg episode reward: [(0, '23.387')]
1512
+ [2024-09-06 08:40:02,307][19093] Saving new best policy, reward=23.387!
1513
+ [2024-09-06 08:40:04,048][19110] Updated weights for policy 0, policy_version 1208 (0.0019)
1514
+ [2024-09-06 08:40:07,299][01070] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3654.9). Total num frames: 4956160. Throughput: 0: 1015.8. Samples: 237174. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1515
+ [2024-09-06 08:40:07,304][01070] Avg episode reward: [(0, '25.478')]
1516
+ [2024-09-06 08:40:07,312][19093] Saving new best policy, reward=25.478!
1517
+ [2024-09-06 08:40:12,299][01070] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3647.8). Total num frames: 4972544. Throughput: 0: 950.4. Samples: 241310. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1518
+ [2024-09-06 08:40:12,301][01070] Avg episode reward: [(0, '26.573')]
1519
+ [2024-09-06 08:40:12,304][19093] Saving new best policy, reward=26.573!
1520
+ [2024-09-06 08:40:15,918][19110] Updated weights for policy 0, policy_version 1218 (0.0034)
1521
+ [2024-09-06 08:40:17,299][01070] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3656.1). Total num frames: 4993024. Throughput: 0: 947.8. Samples: 244528. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1522
+ [2024-09-06 08:40:17,301][01070] Avg episode reward: [(0, '26.655')]
1523
+ [2024-09-06 08:40:17,310][19093] Saving new best policy, reward=26.655!
1524
+ [2024-09-06 08:40:19,413][19093] Stopping Batcher_0...
1525
+ [2024-09-06 08:40:19,413][01070] Component Batcher_0 stopped!
1526
+ [2024-09-06 08:40:19,415][19093] Loop batcher_evt_loop terminating...
1527
+ [2024-09-06 08:40:19,420][19093] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001222_5005312.pth...
1528
+ [2024-09-06 08:40:19,470][19110] Weights refcount: 2 0
1529
+ [2024-09-06 08:40:19,478][01070] Component InferenceWorker_p0-w0 stopped!
1530
+ [2024-09-06 08:40:19,481][19110] Stopping InferenceWorker_p0-w0...
1531
+ [2024-09-06 08:40:19,481][19110] Loop inference_proc0-0_evt_loop terminating...
1532
+ [2024-09-06 08:40:19,543][19093] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001058_4333568.pth
1533
+ [2024-09-06 08:40:19,557][19093] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001222_5005312.pth...
1534
+ [2024-09-06 08:40:19,761][01070] Component LearnerWorker_p0 stopped!
1535
+ [2024-09-06 08:40:19,761][19093] Stopping LearnerWorker_p0...
1536
+ [2024-09-06 08:40:19,766][19093] Loop learner_proc0_evt_loop terminating...
1537
+ [2024-09-06 08:40:19,774][01070] Component RolloutWorker_w3 stopped!
1538
+ [2024-09-06 08:40:19,777][19115] Stopping RolloutWorker_w3...
1539
+ [2024-09-06 08:40:19,779][19115] Loop rollout_proc3_evt_loop terminating...
1540
+ [2024-09-06 08:40:19,804][01070] Component RolloutWorker_w1 stopped!
1541
+ [2024-09-06 08:40:19,806][19111] Stopping RolloutWorker_w1...
1542
+ [2024-09-06 08:40:19,813][19111] Loop rollout_proc1_evt_loop terminating...
1543
+ [2024-09-06 08:40:19,874][01070] Component RolloutWorker_w7 stopped!
1544
+ [2024-09-06 08:40:19,880][19117] Stopping RolloutWorker_w7...
1545
+ [2024-09-06 08:40:19,888][19117] Loop rollout_proc7_evt_loop terminating...
1546
+ [2024-09-06 08:40:19,902][01070] Component RolloutWorker_w5 stopped!
1547
+ [2024-09-06 08:40:19,904][19116] Stopping RolloutWorker_w5...
1548
+ [2024-09-06 08:40:19,909][19116] Loop rollout_proc5_evt_loop terminating...
1549
+ [2024-09-06 08:40:20,003][19118] Stopping RolloutWorker_w6...
1550
+ [2024-09-06 08:40:20,003][19118] Loop rollout_proc6_evt_loop terminating...
1551
+ [2024-09-06 08:40:20,003][01070] Component RolloutWorker_w6 stopped!
1552
+ [2024-09-06 08:40:20,035][19113] Stopping RolloutWorker_w2...
1553
+ [2024-09-06 08:40:20,037][19113] Loop rollout_proc2_evt_loop terminating...
1554
+ [2024-09-06 08:40:20,035][01070] Component RolloutWorker_w2 stopped!
1555
+ [2024-09-06 08:40:20,058][19114] Stopping RolloutWorker_w4...
1556
+ [2024-09-06 08:40:20,057][01070] Component RolloutWorker_w4 stopped!
1557
+ [2024-09-06 08:40:20,062][19114] Loop rollout_proc4_evt_loop terminating...
1558
+ [2024-09-06 08:40:20,066][19112] Stopping RolloutWorker_w0...
1559
+ [2024-09-06 08:40:20,066][01070] Component RolloutWorker_w0 stopped!
1560
+ [2024-09-06 08:40:20,068][01070] Waiting for process learner_proc0 to stop...
1561
+ [2024-09-06 08:40:20,078][19112] Loop rollout_proc0_evt_loop terminating...
1562
+ [2024-09-06 08:40:21,230][01070] Waiting for process inference_proc0-0 to join...
1563
+ [2024-09-06 08:40:21,233][01070] Waiting for process rollout_proc0 to join...
1564
+ [2024-09-06 08:40:24,143][01070] Waiting for process rollout_proc1 to join...
1565
+ [2024-09-06 08:40:24,148][01070] Waiting for process rollout_proc2 to join...
1566
+ [2024-09-06 08:40:24,150][01070] Waiting for process rollout_proc3 to join...
1567
+ [2024-09-06 08:40:24,153][01070] Waiting for process rollout_proc4 to join...
1568
+ [2024-09-06 08:40:24,159][01070] Waiting for process rollout_proc5 to join...
1569
+ [2024-09-06 08:40:24,162][01070] Waiting for process rollout_proc6 to join...
1570
+ [2024-09-06 08:40:24,165][01070] Waiting for process rollout_proc7 to join...
1571
+ [2024-09-06 08:40:24,168][01070] Batcher 0 profile tree view:
1572
+ batching: 7.2186, releasing_batches: 0.0064
1573
+ [2024-09-06 08:40:24,170][01070] InferenceWorker_p0-w0 profile tree view:
1574
+ wait_policy: 0.0054
1575
+ wait_policy_total: 102.6532
1576
+ update_model: 2.2548
1577
+ weight_update: 0.0030
1578
+ one_step: 0.0026
1579
+ handle_policy_step: 154.4121
1580
+ deserialize: 3.6770, stack: 0.8213, obs_to_device_normalize: 31.1067, forward: 82.7946, send_messages: 7.5294
1581
+ prepare_outputs: 21.0675
1582
+ to_cpu: 12.5076
1583
+ [2024-09-06 08:40:24,171][01070] Learner 0 profile tree view:
1584
+ misc: 0.0012, prepare_batch: 5.2823
1585
+ train: 21.8730
1586
+ epoch_init: 0.0014, minibatch_init: 0.0016, losses_postprocess: 0.1603, kl_divergence: 0.2048, after_optimizer: 0.9110
1587
+ calculate_losses: 8.7013
1588
+ losses_init: 0.0013, forward_head: 0.6601, bptt_initial: 6.1101, tail: 0.3325, advantages_returns: 0.0894, losses: 0.9715
1589
+ bptt: 0.4678
1590
+ bptt_forward_core: 0.4488
1591
+ update: 11.7699
1592
+ clip: 0.2453
1593
+ [2024-09-06 08:40:24,173][01070] RolloutWorker_w0 profile tree view:
1594
+ wait_for_trajectories: 0.0619, enqueue_policy_requests: 23.3356, env_step: 206.1955, overhead: 3.3833, complete_rollouts: 1.8563
1595
+ save_policy_outputs: 5.2619
1596
+ split_output_tensors: 2.1953
1597
+ [2024-09-06 08:40:24,175][01070] RolloutWorker_w7 profile tree view:
1598
+ wait_for_trajectories: 0.0745, enqueue_policy_requests: 24.4494, env_step: 203.3563, overhead: 3.1667, complete_rollouts: 1.6788
1599
+ save_policy_outputs: 4.9515
1600
+ split_output_tensors: 2.0046
1601
+ [2024-09-06 08:40:24,177][01070] Loop Runner_EvtLoop terminating...
1602
+ [2024-09-06 08:40:24,179][01070] Runner profile tree view:
1603
+ main_loop: 294.6944
1604
+ [2024-09-06 08:40:24,180][01070] Collected {0: 5005312}, FPS: 3391.4
1605
+ [2024-09-06 08:56:44,318][01070] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1606
+ [2024-09-06 08:56:44,320][01070] Overriding arg 'num_workers' with value 1 passed from command line
1607
+ [2024-09-06 08:56:44,322][01070] Adding new argument 'no_render'=True that is not in the saved config file!
1608
+ [2024-09-06 08:56:44,324][01070] Adding new argument 'save_video'=True that is not in the saved config file!
1609
+ [2024-09-06 08:56:44,326][01070] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1610
+ [2024-09-06 08:56:44,327][01070] Adding new argument 'video_name'=None that is not in the saved config file!
1611
+ [2024-09-06 08:56:44,328][01070] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
1612
+ [2024-09-06 08:56:44,329][01070] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1613
+ [2024-09-06 08:56:44,331][01070] Adding new argument 'push_to_hub'=False that is not in the saved config file!
1614
+ [2024-09-06 08:56:44,332][01070] Adding new argument 'hf_repository'=None that is not in the saved config file!
1615
+ [2024-09-06 08:56:44,333][01070] Adding new argument 'policy_index'=0 that is not in the saved config file!
1616
+ [2024-09-06 08:56:44,334][01070] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1617
+ [2024-09-06 08:56:44,339][01070] Adding new argument 'train_script'=None that is not in the saved config file!
1618
+ [2024-09-06 08:56:44,340][01070] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1619
+ [2024-09-06 08:56:44,341][01070] Using frameskip 1 and render_action_repeat=4 for evaluation
1620
+ [2024-09-06 08:56:44,368][01070] RunningMeanStd input shape: (3, 72, 128)
1621
+ [2024-09-06 08:56:44,370][01070] RunningMeanStd input shape: (1,)
1622
+ [2024-09-06 08:56:44,390][01070] ConvEncoder: input_channels=3
1623
+ [2024-09-06 08:56:44,435][01070] Conv encoder output size: 512
1624
+ [2024-09-06 08:56:44,436][01070] Policy head output size: 512
1625
+ [2024-09-06 08:56:44,457][01070] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001222_5005312.pth...
1626
+ [2024-09-06 08:56:44,883][01070] Num frames 100...
1627
+ [2024-09-06 08:56:45,006][01070] Num frames 200...
1628
+ [2024-09-06 08:56:45,128][01070] Num frames 300...
1629
+ [2024-09-06 08:56:45,247][01070] Num frames 400...
1630
+ [2024-09-06 08:56:45,367][01070] Num frames 500...
1631
+ [2024-09-06 08:56:45,497][01070] Num frames 600...
1632
+ [2024-09-06 08:56:45,618][01070] Num frames 700...
1633
+ [2024-09-06 08:56:45,741][01070] Num frames 800...
1634
+ [2024-09-06 08:56:45,860][01070] Num frames 900...
1635
+ [2024-09-06 08:56:45,978][01070] Num frames 1000...
1636
+ [2024-09-06 08:56:46,102][01070] Num frames 1100...
1637
+ [2024-09-06 08:56:46,224][01070] Num frames 1200...
1638
+ [2024-09-06 08:56:46,348][01070] Num frames 1300...
1639
+ [2024-09-06 08:56:46,479][01070] Num frames 1400...
1640
+ [2024-09-06 08:56:46,606][01070] Num frames 1500...
1641
+ [2024-09-06 08:56:46,726][01070] Num frames 1600...
1642
+ [2024-09-06 08:56:46,845][01070] Num frames 1700...
1643
+ [2024-09-06 08:56:46,967][01070] Num frames 1800...
1644
+ [2024-09-06 08:56:47,110][01070] Avg episode rewards: #0: 46.719, true rewards: #0: 18.720
1645
+ [2024-09-06 08:56:47,113][01070] Avg episode reward: 46.719, avg true_objective: 18.720
1646
+ [2024-09-06 08:56:47,150][01070] Num frames 1900...
1647
+ [2024-09-06 08:56:47,268][01070] Num frames 2000...
1648
+ [2024-09-06 08:56:47,388][01070] Num frames 2100...
1649
+ [2024-09-06 08:56:47,523][01070] Num frames 2200...
1650
+ [2024-09-06 08:56:47,671][01070] Num frames 2300...
1651
+ [2024-09-06 08:56:47,751][01070] Avg episode rewards: #0: 27.100, true rewards: #0: 11.600
1652
+ [2024-09-06 08:56:47,752][01070] Avg episode reward: 27.100, avg true_objective: 11.600
1653
+ [2024-09-06 08:56:47,854][01070] Num frames 2400...
1654
+ [2024-09-06 08:56:47,975][01070] Num frames 2500...
1655
+ [2024-09-06 08:56:48,094][01070] Num frames 2600...
1656
+ [2024-09-06 08:56:48,217][01070] Num frames 2700...
1657
+ [2024-09-06 08:56:48,342][01070] Num frames 2800...
1658
+ [2024-09-06 08:56:48,467][01070] Num frames 2900...
1659
+ [2024-09-06 08:56:48,602][01070] Num frames 3000...
1660
+ [2024-09-06 08:56:48,749][01070] Num frames 3100...
1661
+ [2024-09-06 08:56:48,919][01070] Num frames 3200...
1662
+ [2024-09-06 08:56:49,093][01070] Num frames 3300...
1663
+ [2024-09-06 08:56:49,273][01070] Avg episode rewards: #0: 26.253, true rewards: #0: 11.253
1664
+ [2024-09-06 08:56:49,277][01070] Avg episode reward: 26.253, avg true_objective: 11.253
1665
+ [2024-09-06 08:56:49,319][01070] Num frames 3400...
1666
+ [2024-09-06 08:56:49,496][01070] Num frames 3500...
1667
+ [2024-09-06 08:56:49,661][01070] Num frames 3600...
1668
+ [2024-09-06 08:56:49,822][01070] Num frames 3700...
1669
+ [2024-09-06 08:56:50,036][01070] Avg episode rewards: #0: 21.230, true rewards: #0: 9.480
1670
+ [2024-09-06 08:56:50,038][01070] Avg episode reward: 21.230, avg true_objective: 9.480
1671
+ [2024-09-06 08:56:50,057][01070] Num frames 3800...
1672
+ [2024-09-06 08:56:50,224][01070] Num frames 3900...
1673
+ [2024-09-06 08:56:50,397][01070] Num frames 4000...
1674
+ [2024-09-06 08:56:50,585][01070] Num frames 4100...
1675
+ [2024-09-06 08:56:50,755][01070] Num frames 4200...
1676
+ [2024-09-06 08:56:50,944][01070] Num frames 4300...
1677
+ [2024-09-06 08:56:51,125][01070] Num frames 4400...
1678
+ [2024-09-06 08:56:51,259][01070] Num frames 4500...
1679
+ [2024-09-06 08:56:51,382][01070] Num frames 4600...
1680
+ [2024-09-06 08:56:51,504][01070] Num frames 4700...
1681
+ [2024-09-06 08:56:51,623][01070] Num frames 4800...
1682
+ [2024-09-06 08:56:51,752][01070] Num frames 4900...
1683
+ [2024-09-06 08:56:51,870][01070] Num frames 5000...
1684
+ [2024-09-06 08:56:51,988][01070] Num frames 5100...
1685
+ [2024-09-06 08:56:52,111][01070] Num frames 5200...
1686
+ [2024-09-06 08:56:52,228][01070] Num frames 5300...
1687
+ [2024-09-06 08:56:52,393][01070] Avg episode rewards: #0: 24.784, true rewards: #0: 10.784
1688
+ [2024-09-06 08:56:52,394][01070] Avg episode reward: 24.784, avg true_objective: 10.784
1689
+ [2024-09-06 08:56:52,408][01070] Num frames 5400...
1690
+ [2024-09-06 08:56:52,534][01070] Num frames 5500...
1691
+ [2024-09-06 08:56:52,657][01070] Num frames 5600...
1692
+ [2024-09-06 08:56:52,788][01070] Num frames 5700...
1693
+ [2024-09-06 08:56:52,907][01070] Num frames 5800...
1694
+ [2024-09-06 08:56:53,028][01070] Num frames 5900...
1695
+ [2024-09-06 08:56:53,148][01070] Num frames 6000...
1696
+ [2024-09-06 08:56:53,268][01070] Num frames 6100...
1697
+ [2024-09-06 08:56:53,388][01070] Num frames 6200...
1698
+ [2024-09-06 08:56:53,515][01070] Num frames 6300...
1699
+ [2024-09-06 08:56:53,638][01070] Num frames 6400...
1700
+ [2024-09-06 08:56:53,779][01070] Num frames 6500...
1701
+ [2024-09-06 08:56:53,901][01070] Num frames 6600...
1702
+ [2024-09-06 08:56:54,025][01070] Num frames 6700...
1703
+ [2024-09-06 08:56:54,146][01070] Num frames 6800...
1704
+ [2024-09-06 08:56:54,268][01070] Num frames 6900...
1705
+ [2024-09-06 08:56:54,390][01070] Num frames 7000...
1706
+ [2024-09-06 08:56:54,560][01070] Avg episode rewards: #0: 28.313, true rewards: #0: 11.813
1707
+ [2024-09-06 08:56:54,562][01070] Avg episode reward: 28.313, avg true_objective: 11.813
1708
+ [2024-09-06 08:56:54,581][01070] Num frames 7100...
1709
+ [2024-09-06 08:56:54,699][01070] Num frames 7200...
1710
+ [2024-09-06 08:56:54,827][01070] Num frames 7300...
1711
+ [2024-09-06 08:56:54,945][01070] Num frames 7400...
1712
+ [2024-09-06 08:56:55,064][01070] Num frames 7500...
1713
+ [2024-09-06 08:56:55,188][01070] Num frames 7600...
1714
+ [2024-09-06 08:56:55,281][01070] Avg episode rewards: #0: 25.760, true rewards: #0: 10.903
1715
+ [2024-09-06 08:56:55,283][01070] Avg episode reward: 25.760, avg true_objective: 10.903
1716
+ [2024-09-06 08:56:55,366][01070] Num frames 7700...
1717
+ [2024-09-06 08:56:55,489][01070] Num frames 7800...
1718
+ [2024-09-06 08:56:55,612][01070] Num frames 7900...
1719
+ [2024-09-06 08:56:55,732][01070] Num frames 8000...
1720
+ [2024-09-06 08:56:55,892][01070] Avg episode rewards: #0: 23.600, true rewards: #0: 10.100
1721
+ [2024-09-06 08:56:55,894][01070] Avg episode reward: 23.600, avg true_objective: 10.100
1722
+ [2024-09-06 08:56:55,921][01070] Num frames 8100...
1723
+ [2024-09-06 08:56:56,039][01070] Num frames 8200...
1724
+ [2024-09-06 08:56:56,159][01070] Num frames 8300...
1725
+ [2024-09-06 08:56:56,280][01070] Num frames 8400...
1726
+ [2024-09-06 08:56:56,402][01070] Num frames 8500...
1727
+ [2024-09-06 08:56:56,532][01070] Num frames 8600...
1728
+ [2024-09-06 08:56:56,656][01070] Num frames 8700...
1729
+ [2024-09-06 08:56:56,782][01070] Num frames 8800...
1730
+ [2024-09-06 08:56:56,911][01070] Num frames 8900...
1731
+ [2024-09-06 08:56:57,036][01070] Num frames 9000...
1732
+ [2024-09-06 08:56:57,162][01070] Num frames 9100...
1733
+ [2024-09-06 08:56:57,286][01070] Num frames 9200...
1734
+ [2024-09-06 08:56:57,409][01070] Num frames 9300...
1735
+ [2024-09-06 08:56:57,498][01070] Avg episode rewards: #0: 24.253, true rewards: #0: 10.364
1736
+ [2024-09-06 08:56:57,500][01070] Avg episode reward: 24.253, avg true_objective: 10.364
1737
+ [2024-09-06 08:56:57,588][01070] Num frames 9400...
1738
+ [2024-09-06 08:56:57,710][01070] Num frames 9500...
1739
+ [2024-09-06 08:56:57,848][01070] Num frames 9600...
1740
+ [2024-09-06 08:56:57,973][01070] Num frames 9700...
1741
+ [2024-09-06 08:56:58,097][01070] Num frames 9800...
1742
+ [2024-09-06 08:56:58,209][01070] Avg episode rewards: #0: 22.746, true rewards: #0: 9.846
1743
+ [2024-09-06 08:56:58,211][01070] Avg episode reward: 22.746, avg true_objective: 9.846
1744
+ [2024-09-06 08:57:59,802][01070] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1745
+ [2024-09-06 09:00:55,778][01070] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1746
+ [2024-09-06 09:00:55,780][01070] Overriding arg 'num_workers' with value 1 passed from command line
1747
+ [2024-09-06 09:00:55,782][01070] Adding new argument 'no_render'=True that is not in the saved config file!
1748
+ [2024-09-06 09:00:55,784][01070] Adding new argument 'save_video'=True that is not in the saved config file!
1749
+ [2024-09-06 09:00:55,786][01070] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1750
+ [2024-09-06 09:00:55,789][01070] Adding new argument 'video_name'=None that is not in the saved config file!
1751
+ [2024-09-06 09:00:55,791][01070] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
1752
+ [2024-09-06 09:00:55,792][01070] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1753
+ [2024-09-06 09:00:55,793][01070] Adding new argument 'push_to_hub'=True that is not in the saved config file!
1754
+ [2024-09-06 09:00:55,794][01070] Adding new argument 'hf_repository'='Re-Re/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
1755
+ [2024-09-06 09:00:55,795][01070] Adding new argument 'policy_index'=0 that is not in the saved config file!
1756
+ [2024-09-06 09:00:55,796][01070] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1757
+ [2024-09-06 09:00:55,797][01070] Adding new argument 'train_script'=None that is not in the saved config file!
1758
+ [2024-09-06 09:00:55,798][01070] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1759
+ [2024-09-06 09:00:55,799][01070] Using frameskip 1 and render_action_repeat=4 for evaluation
1760
+ [2024-09-06 09:00:55,830][01070] RunningMeanStd input shape: (3, 72, 128)
1761
+ [2024-09-06 09:00:55,832][01070] RunningMeanStd input shape: (1,)
1762
+ [2024-09-06 09:00:55,846][01070] ConvEncoder: input_channels=3
1763
+ [2024-09-06 09:00:55,882][01070] Conv encoder output size: 512
1764
+ [2024-09-06 09:00:55,884][01070] Policy head output size: 512
1765
+ [2024-09-06 09:00:55,904][01070] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001222_5005312.pth...
1766
+ [2024-09-06 09:00:56,320][01070] Num frames 100...
1767
+ [2024-09-06 09:00:56,441][01070] Num frames 200...
1768
+ [2024-09-06 09:00:56,597][01070] Num frames 300...
1769
+ [2024-09-06 09:00:56,715][01070] Num frames 400...
1770
+ [2024-09-06 09:00:56,840][01070] Num frames 500...
1771
+ [2024-09-06 09:00:56,960][01070] Num frames 600...
1772
+ [2024-09-06 09:00:57,080][01070] Num frames 700...
1773
+ [2024-09-06 09:00:57,182][01070] Avg episode rewards: #0: 16.380, true rewards: #0: 7.380
1774
+ [2024-09-06 09:00:57,184][01070] Avg episode reward: 16.380, avg true_objective: 7.380
1775
+ [2024-09-06 09:00:57,264][01070] Num frames 800...
1776
+ [2024-09-06 09:00:57,399][01070] Num frames 900...
1777
+ [2024-09-06 09:00:57,529][01070] Num frames 1000...
1778
+ [2024-09-06 09:00:57,650][01070] Num frames 1100...
1779
+ [2024-09-06 09:00:57,775][01070] Num frames 1200...
1780
+ [2024-09-06 09:00:57,898][01070] Num frames 1300...
1781
+ [2024-09-06 09:00:58,016][01070] Num frames 1400...
1782
+ [2024-09-06 09:00:58,136][01070] Num frames 1500...
1783
+ [2024-09-06 09:00:58,255][01070] Num frames 1600...
1784
+ [2024-09-06 09:00:58,314][01070] Avg episode rewards: #0: 18.010, true rewards: #0: 8.010
1785
+ [2024-09-06 09:00:58,316][01070] Avg episode reward: 18.010, avg true_objective: 8.010
1786
+ [2024-09-06 09:00:58,433][01070] Num frames 1700...
1787
+ [2024-09-06 09:00:58,562][01070] Num frames 1800...
1788
+ [2024-09-06 09:00:58,686][01070] Num frames 1900...
1789
+ [2024-09-06 09:00:58,804][01070] Num frames 2000...
1790
+ [2024-09-06 09:00:58,927][01070] Num frames 2100...
1791
+ [2024-09-06 09:00:59,047][01070] Num frames 2200...
1792
+ [2024-09-06 09:00:59,165][01070] Num frames 2300...
1793
+ [2024-09-06 09:00:59,285][01070] Num frames 2400...
1794
+ [2024-09-06 09:00:59,413][01070] Num frames 2500...
1795
+ [2024-09-06 09:00:59,544][01070] Num frames 2600...
1796
+ [2024-09-06 09:00:59,669][01070] Num frames 2700...
1797
+ [2024-09-06 09:00:59,789][01070] Num frames 2800...
1798
+ [2024-09-06 09:00:59,937][01070] Num frames 2900...
1799
+ [2024-09-06 09:01:00,112][01070] Num frames 3000...
1800
+ [2024-09-06 09:01:00,278][01070] Num frames 3100...
1801
+ [2024-09-06 09:01:00,453][01070] Num frames 3200...
1802
+ [2024-09-06 09:01:00,623][01070] Num frames 3300...
1803
+ [2024-09-06 09:01:00,786][01070] Num frames 3400...
1804
+ [2024-09-06 09:01:00,952][01070] Num frames 3500...
1805
+ [2024-09-06 09:01:01,119][01070] Num frames 3600...
1806
+ [2024-09-06 09:01:01,294][01070] Num frames 3700...
1807
+ [2024-09-06 09:01:01,356][01070] Avg episode rewards: #0: 30.673, true rewards: #0: 12.340
1808
+ [2024-09-06 09:01:01,357][01070] Avg episode reward: 30.673, avg true_objective: 12.340
1809
+ [2024-09-06 09:01:01,535][01070] Num frames 3800...
1810
+ [2024-09-06 09:01:01,711][01070] Num frames 3900...
1811
+ [2024-09-06 09:01:01,881][01070] Num frames 4000...
1812
+ [2024-09-06 09:01:02,049][01070] Num frames 4100...
1813
+ [2024-09-06 09:01:02,222][01070] Num frames 4200...
1814
+ [2024-09-06 09:01:02,396][01070] Num frames 4300...
1815
+ [2024-09-06 09:01:02,534][01070] Num frames 4400...
1816
+ [2024-09-06 09:01:02,655][01070] Num frames 4500...
1817
+ [2024-09-06 09:01:02,776][01070] Num frames 4600...
1818
+ [2024-09-06 09:01:02,898][01070] Num frames 4700...
1819
+ [2024-09-06 09:01:03,020][01070] Num frames 4800...
1820
+ [2024-09-06 09:01:03,140][01070] Num frames 4900...
1821
+ [2024-09-06 09:01:03,261][01070] Num frames 5000...
1822
+ [2024-09-06 09:01:03,383][01070] Num frames 5100...
1823
+ [2024-09-06 09:01:03,519][01070] Num frames 5200...
1824
+ [2024-09-06 09:01:03,641][01070] Num frames 5300...
1825
+ [2024-09-06 09:01:03,817][01070] Avg episode rewards: #0: 34.225, true rewards: #0: 13.475
1826
+ [2024-09-06 09:01:03,818][01070] Avg episode reward: 34.225, avg true_objective: 13.475
1827
+ [2024-09-06 09:01:03,835][01070] Num frames 5400...
1828
+ [2024-09-06 09:01:03,956][01070] Num frames 5500...
1829
+ [2024-09-06 09:01:04,074][01070] Num frames 5600...
1830
+ [2024-09-06 09:01:04,194][01070] Num frames 5700...
1831
+ [2024-09-06 09:01:04,314][01070] Num frames 5800...
1832
+ [2024-09-06 09:01:04,436][01070] Num frames 5900...
1833
+ [2024-09-06 09:01:04,574][01070] Num frames 6000...
1834
+ [2024-09-06 09:01:04,693][01070] Num frames 6100...
1835
+ [2024-09-06 09:01:04,810][01070] Num frames 6200...
1836
+ [2024-09-06 09:01:04,934][01070] Num frames 6300...
1837
+ [2024-09-06 09:01:05,057][01070] Num frames 6400...
1838
+ [2024-09-06 09:01:05,177][01070] Num frames 6500...
1839
+ [2024-09-06 09:01:05,296][01070] Num frames 6600...
1840
+ [2024-09-06 09:01:05,424][01070] Num frames 6700...
1841
+ [2024-09-06 09:01:05,562][01070] Num frames 6800...
1842
+ [2024-09-06 09:01:05,698][01070] Num frames 6900...
1843
+ [2024-09-06 09:01:05,816][01070] Num frames 7000...
1844
+ [2024-09-06 09:01:05,936][01070] Num frames 7100...
1845
+ [2024-09-06 09:01:06,057][01070] Num frames 7200...
1846
+ [2024-09-06 09:01:06,179][01070] Num frames 7300...
1847
+ [2024-09-06 09:01:06,303][01070] Num frames 7400...
1848
+ [2024-09-06 09:01:06,469][01070] Avg episode rewards: #0: 38.779, true rewards: #0: 14.980
1849
+ [2024-09-06 09:01:06,474][01070] Avg episode reward: 38.779, avg true_objective: 14.980
1850
+ [2024-09-06 09:01:06,493][01070] Num frames 7500...
1851
+ [2024-09-06 09:01:06,629][01070] Num frames 7600...
1852
+ [2024-09-06 09:01:06,753][01070] Num frames 7700...
1853
+ [2024-09-06 09:01:06,875][01070] Num frames 7800...
1854
+ [2024-09-06 09:01:06,995][01070] Num frames 7900...
1855
+ [2024-09-06 09:01:07,118][01070] Num frames 8000...
1856
+ [2024-09-06 09:01:07,240][01070] Num frames 8100...
1857
+ [2024-09-06 09:01:07,359][01070] Num frames 8200...
1858
+ [2024-09-06 09:01:07,476][01070] Avg episode rewards: #0: 34.920, true rewards: #0: 13.753
1859
+ [2024-09-06 09:01:07,478][01070] Avg episode reward: 34.920, avg true_objective: 13.753
1860
+ [2024-09-06 09:01:07,541][01070] Num frames 8300...
1861
+ [2024-09-06 09:01:07,670][01070] Num frames 8400...
1862
+ [2024-09-06 09:01:07,789][01070] Num frames 8500...
1863
+ [2024-09-06 09:01:07,912][01070] Num frames 8600...
1864
+ [2024-09-06 09:01:08,030][01070] Num frames 8700...
1865
+ [2024-09-06 09:01:08,150][01070] Num frames 8800...
1866
+ [2024-09-06 09:01:08,275][01070] Num frames 8900...
1867
+ [2024-09-06 09:01:08,400][01070] Avg episode rewards: #0: 31.794, true rewards: #0: 12.794
1868
+ [2024-09-06 09:01:08,402][01070] Avg episode reward: 31.794, avg true_objective: 12.794
1869
+ [2024-09-06 09:01:08,457][01070] Num frames 9000...
1870
+ [2024-09-06 09:01:08,587][01070] Num frames 9100...
1871
+ [2024-09-06 09:01:08,723][01070] Num frames 9200...
1872
+ [2024-09-06 09:01:08,851][01070] Num frames 9300...
1873
+ [2024-09-06 09:01:08,979][01070] Num frames 9400...
1874
+ [2024-09-06 09:01:09,106][01070] Num frames 9500...
1875
+ [2024-09-06 09:01:09,230][01070] Num frames 9600...
1876
+ [2024-09-06 09:01:09,356][01070] Num frames 9700...
1877
+ [2024-09-06 09:01:09,487][01070] Num frames 9800...
1878
+ [2024-09-06 09:01:09,614][01070] Num frames 9900...
1879
+ [2024-09-06 09:01:09,745][01070] Num frames 10000...
1880
+ [2024-09-06 09:01:09,870][01070] Num frames 10100...
1881
+ [2024-09-06 09:01:09,995][01070] Num frames 10200...
1882
+ [2024-09-06 09:01:10,118][01070] Num frames 10300...
1883
+ [2024-09-06 09:01:10,238][01070] Num frames 10400...
1884
+ [2024-09-06 09:01:10,360][01070] Num frames 10500...
1885
+ [2024-09-06 09:01:10,493][01070] Num frames 10600...
1886
+ [2024-09-06 09:01:10,614][01070] Num frames 10700...
1887
+ [2024-09-06 09:01:10,741][01070] Num frames 10800...
1888
+ [2024-09-06 09:01:10,866][01070] Num frames 10900...
1889
+ [2024-09-06 09:01:10,993][01070] Num frames 11000...
1890
+ [2024-09-06 09:01:11,116][01070] Avg episode rewards: #0: 34.820, true rewards: #0: 13.820
1891
+ [2024-09-06 09:01:11,118][01070] Avg episode reward: 34.820, avg true_objective: 13.820
1892
+ [2024-09-06 09:01:11,175][01070] Num frames 11100...
1893
+ [2024-09-06 09:01:11,294][01070] Num frames 11200...
1894
+ [2024-09-06 09:01:11,414][01070] Num frames 11300...
1895
+ [2024-09-06 09:01:11,549][01070] Num frames 11400...
1896
+ [2024-09-06 09:01:11,615][01070] Avg episode rewards: #0: 31.453, true rewards: #0: 12.676
1897
+ [2024-09-06 09:01:11,617][01070] Avg episode reward: 31.453, avg true_objective: 12.676
1898
+ [2024-09-06 09:01:11,740][01070] Num frames 11500...
1899
+ [2024-09-06 09:01:11,869][01070] Num frames 11600...
1900
+ [2024-09-06 09:01:11,989][01070] Num frames 11700...
1901
+ [2024-09-06 09:01:12,106][01070] Num frames 11800...
1902
+ [2024-09-06 09:01:12,231][01070] Avg episode rewards: #0: 29.156, true rewards: #0: 11.856
1903
+ [2024-09-06 09:01:12,233][01070] Avg episode reward: 29.156, avg true_objective: 11.856
1904
+ [2024-09-06 09:02:25,893][01070] Replay video saved to /content/train_dir/default_experiment/replay.mp4!