File size: 4,009 Bytes
cf47967
 
 
 
 
 
617a948
 
 
 
 
 
 
 
cf47967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2edfb96
cf47967
2edfb96
 
cf47967
 
 
 
 
617a948
cf47967
 
 
617a948
cf47967
 
 
2edfb96
 
 
 
 
cf47967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617a948
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-360M
tags:
- generated_from_trainer
- axolotl
datasets:
- ReDiX/everyday-conversations-ita
- ReDiX/DataForge
language:
- it
- en
pipeline_tag: text-generation
---

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.5.0`
```yaml
base_model: HuggingFaceTB/SmolLM2-360M

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: ./dataforge
    type: chat_template

    field_messages: conversations
    message_field_role: from
    message_field_content: value
  
  - path: HuggingFaceTB/smol-smoltalk
    type: chat_template

    field_messages: messages
    message_field_role: role
    message_field_content: content

chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/smollm360m

sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name: smollm2
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1.0e-03

train_on_inputs: false
group_by_length: false
bf16: true
fp16: 
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 5
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: "<|im_end|>"
  eos_token: "<|im_end|>"
```

</details><br>

# SmolLM2 360M Instruct ITA

This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) on the [smol-smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk) dataset and on the [ReDiX/DataForge](https://huggingface.co/datasets/ReDiX/DataForge).
Our datasets is a mixture of open source italian datasets and [ReDiX/everyday-conversations-ita](https://huggingface.co/datasets/ReDiX/everyday-conversations-ita)
It achieves the following results on the evaluation set:
- Loss: 0.8925

## Model description

This model is an experiment to test out the [ReDiX/everyday-conversations-ita](https://huggingface.co/datasets/ReDiX/everyday-conversations-ita) dataset.

## Intended uses & limitations

Simple and very basic chat in italian and english

## Training and evaluation data

| Model  |  m_mmlu_it | arc_it  | hellaswag_it  |
|:------:|:----------:|:-------:|:-------------:|
| Qwen2.5-0.5-Instruct | **37.05** | 27.54 | 35.73 |
| ReDiX/SmolLM2-360M-Instruct-ita | 24.94 | **28.40** | **35.96** |


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0003 | 1    | 1.3366          |
| 1.0595        | 0.2501 | 774  | 1.0840          |
| 1.0194        | 0.5002 | 1548 | 1.0139          |
| 1.0075        | 0.7504 | 2322 | 0.9701          |
| 1.0286        | 1.0005 | 3096 | 0.9269          |
| 0.7871        | 1.2506 | 3870 | 0.9111          |
| 0.7481        | 1.5007 | 4644 | 0.8960          |
| 0.7429        | 1.7508 | 5418 | 0.8925          |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3