--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-360M tags: - generated_from_trainer - axolotl datasets: - ReDiX/everyday-conversations-ita - ReDiX/DataForge language: - it - en pipeline_tag: text-generation --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.0` ```yaml base_model: HuggingFaceTB/SmolLM2-360M load_in_8bit: false load_in_4bit: false strict: false datasets: - path: ./dataforge type: chat_template field_messages: conversations message_field_role: from message_field_content: value - path: HuggingFaceTB/smol-smoltalk type: chat_template field_messages: messages message_field_role: role message_field_content: content chat_template: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./outputs/smollm360m sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: axolotl wandb_entity: wandb_watch: wandb_name: smollm2 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1.0e-03 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 5 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|im_end|>" eos_token: "<|im_end|>" ```

# SmolLM2 360M Instruct ITA This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) on the [smol-smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk) dataset and on the [ReDiX/DataForge](https://huggingface.co/datasets/ReDiX/DataForge). Our datasets is a mixture of open source italian datasets and [ReDiX/everyday-conversations-ita](https://huggingface.co/datasets/ReDiX/everyday-conversations-ita) It achieves the following results on the evaluation set: - Loss: 0.8925 ## Model description This model is an experiment to test out the [ReDiX/everyday-conversations-ita](https://huggingface.co/datasets/ReDiX/everyday-conversations-ita) dataset. ## Intended uses & limitations Simple and very basic chat in italian and english ## Training and evaluation data | Model | m_mmlu_it | arc_it | hellaswag_it | |:------:|:----------:|:-------:|:-------------:| | Qwen2.5-0.5-Instruct | **37.05** | 27.54 | 35.73 | | ReDiX/SmolLM2-360M-Instruct-ita | 24.94 | **28.40** | **35.96** | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 1.3366 | | 1.0595 | 0.2501 | 774 | 1.0840 | | 1.0194 | 0.5002 | 1548 | 1.0139 | | 1.0075 | 0.7504 | 2322 | 0.9701 | | 1.0286 | 1.0005 | 3096 | 0.9269 | | 0.7871 | 1.2506 | 3870 | 0.9111 | | 0.7481 | 1.5007 | 4644 | 0.8960 | | 0.7429 | 1.7508 | 5418 | 0.8925 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3