import streamlit as st import pickle import pandas as pd import requests # Function to fetch movie poster from API def fetch_poster(movie_id): response = requests.get( f'https://api.themoviedb.org/3/movie/{movie_id}?api_key=9b955595d7ffef24254513d6a66503fe&language=en-US' ) data = response.json() return "http://image.tmdb.org/t/p/w500" + data['poster_path'] # Function to recommend movies based on selected movie def recommend(movie): movie_index = movies[movies['title'] == movie].index[0] distances = similarity[movie_index] movie_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6] recommended_movies = [] recommended_posters = [] for i in movie_list: movie_id = movies.iloc[i[0]].movie_id recommended_movies.append(movies.iloc[i[0]].title) recommended_posters.append(fetch_poster(movie_id)) return recommended_movies, recommended_posters # Load data (movies and similarity matrix) movies_dict = pickle.load(open('movie_dict2.pkl', 'rb')) movies = pd.DataFrame(movies_dict) similarity = pickle.load(open('similarity.pkl', 'rb')) # App title st.title('🎬 Movie Recommender System') # Movie selection section st.subheader("Select a movie to get recommendations:") selected_movie_name = st.selectbox('Choose a movie:', movies['title'].values) # Recommendation button and display if st.button('Recommend'): recommended_names, recommended_posters = recommend(selected_movie_name) # Displaying recommendations in a more visually appealing way st.subheader(f"Movies recommended based on '{selected_movie_name}':") cols = st.columns(5) # Dividing the page into 5 columns for idx, col in enumerate(cols): with col: st.text(recommended_names[idx]) st.image(recommended_posters[idx]) # Adding a clickable link that redirects to Google search for the movie search_url = f"https://www.google.com/search?q={recommended_names[idx].replace(' ', '+')}+movie" st.markdown(f"[Search '{recommended_names[idx]}' on Google]({search_url})", unsafe_allow_html=True)