--- base_model: mistralai/Mistral-7B-v0.1 library_name: peft license: apache-2.0 tags: - trl - dpo - generated_from_trainer model-index: - name: zephyr-7b-dpo-qlora results: [] --- # zephyr-7b-dpo-qlora This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1964.4768 - Rewards/chosen: -0.1407 - Rewards/rejected: -0.2359 - Rewards/accuracies: 0.7243 - Rewards/margins: 0.0952 - Logps/rejected: -25.2353 - Logps/chosen: -15.6615 - Logits/rejected: -6.0582 - Logits/chosen: -5.0283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 2178.8832 | 0.3017 | 100 | 2139.6340 | -0.1014 | -0.1518 | 0.6781 | 0.0504 | -16.8316 | -11.7293 | -3.3193 | -3.1137 | | 1986.1408 | 0.6033 | 200 | 1989.8781 | -0.1408 | -0.2280 | 0.7055 | 0.0872 | -24.4503 | -15.6687 | -6.1921 | -5.2910 | | 2000.1098 | 0.9050 | 300 | 1964.4768 | -0.1407 | -0.2359 | 0.7243 | 0.0952 | -25.2353 | -15.6615 | -6.0582 | -5.0283 | ### Framework versions - PEFT 0.12.0 - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1