Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +18 -18
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 267.46 +/- 18.29
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd38a650d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd38a65160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd38a651f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd38a65280>", "_build": "<function ActorCriticPolicy._build at 0x7fdd38a65310>", "forward": "<function ActorCriticPolicy.forward at 0x7fdd38a653a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd38a65430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdd38a654c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd38a65550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd38a655e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd38a65670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdd38a5af60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651874692.7907588, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVPQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIYvVXNlcnMvcnVhdm1pMS9Eb2N1bWVudHMvY291cnNlcy9yZWluZm9yY2VtZW50IGxlYXJuaW5nL2RlZXAtcmwtY2xhc3MvcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMhi9Vc2Vycy9ydWF2bWkxL0RvY3VtZW50cy9jb3Vyc2VzL3JlaW5mb3JjZW1lbnQgbGVhcm5pbmcvZGVlcC1ybC1jbGFzcy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACA6LtICY26PLUNOeYJWDa5WCk7uEgjuAAAgD8AAIA/QLLPPeF8hrobGzI7XTaNNj3E3jp9yE26AACAPwAAgD8ziQ899mx+urLggDupe+w2SL6rudgUlboAAIA/AACAPzNz3j2PYg66HtzhurM7PzVr1mc7CEextAAAgD8AAIA/TbyhPY8eNLrTR7O7EfKFOPnBPTuOfVM6AACAPwAAgD/A8AM+uH7rubWfKzop2j82vsgTO3PSSrkAAIA/AACAP5qqlbxSuLA4vtg9OheAPTU+Q9E7q9lquQAAgD8AAIA/uig9vnvgxbzKz6S5Ulo/uMKnLj4lTuQ4AACAPwAAgD9zg7Q9hdvnuUDJgjhEZMMyAPYNO+jimbcAAIA/AACAP6ClRT7Dl228+svVO1Rfv7ltEeC94L/rugAAgD8AAIA/msALvcN9S7rxrBo7akdlNajwmzviI1Q0AACAPwAAgD/NP0K+dHzNvJPxjbyfKSa7K/kyPnEfADwAAIA/AACAP1rPvr1Il4+6esnpuuZq+bW9DEE5RqMHOgAAgD8AAIA/ioe/PmSbND9iRAs+9DvbvgysOj5Gow+9AAAAAAAAAACNSxo+ac4vvJJcxTsE9V66Gyydvb9uJLsAAIA/AACAP5pix7wpTFW6SmjtO8pLFbXFiqQ7AO/rswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoBaDh+m4ZECUhpRSlIwBbJRN6AOMAXSUR0CE+pF72L5zdX2UKGgGaAloD0MIrIvbaABDM0CUhpRSlGgVS+RoFkdAhPquUliSaHV9lChoBmgJaA9DCKM6Hcj6+GJAlIaUUpRoFU3oA2gWR0CE/8IE8q4IdX2UKGgGaAloD0MIvi8uVWk3Y0CUhpRSlGgVTegDaBZHQIUBWPRzBAR1fZQoaAZoCWgPQwjbGaa2VEBkQJSGlFKUaBVN6ANoFkdAhQoV9nbqQnV9lChoBmgJaA9DCB/WG7XC/WJAlIaUUpRoFU3oA2gWR0CFOAzRhMJydX2UKGgGaAloD0MI7lwY6UW7XkCUhpRSlGgVTegDaBZHQIU6p8hLXcx1fZQoaAZoCWgPQwhL5e0Ip7hiQJSGlFKUaBVN6ANoFkdAhTu9fb9IgHV9lChoBmgJaA9DCNBjlGfeg2NAlIaUUpRoFU3oA2gWR0CFPG2fkFOgdX2UKGgGaAloD0MISGqhZHIpY0CUhpRSlGgVTegDaBZHQIVdgiA2AG11fZQoaAZoCWgPQwjPvYdLDvdhQJSGlFKUaBVN6ANoFkdAhWU9lmOENHV9lChoBmgJaA9DCKvN/6uOjWNAlIaUUpRoFU3oA2gWR0CFZu+mFajfdX2UKGgGaAloD0MIGqTgKWQjYECUhpRSlGgVTegDaBZHQIVs93ljmS11fZQoaAZoCWgPQwhIjJ5baBhjQJSGlFKUaBVN6ANoFkdAhW5bVJ+UhXV9lChoBmgJaA9DCPNxbaiY5mFAlIaUUpRoFU3oA2gWR0CFb1y+6Ae8dX2UKGgGaAloD0MI41MAjGfQZUCUhpRSlGgVTegDaBZHQIVzGuPmxMZ1fZQoaAZoCWgPQwj7srRTc7xbQJSGlFKUaBVN6ANoFkdAhXW8A7xNI3V9lChoBmgJaA9DCJQzFHc8DGZAlIaUUpRoFU3oA2gWR0CFddq/M4cWdX2UKGgGaAloD0MIZJKRs7AlYkCUhpRSlGgVTegDaBZHQIV7IZ/CqId1fZQoaAZoCWgPQwiIf9jSo+ZiQJSGlFKUaBVN6ANoFkdAhXzpOnEVFnV9lChoBmgJaA9DCKH18GUizmNAlIaUUpRoFU3oA2gWR0CFhh8VHnU2dX2UKGgGaAloD0MI2uGvyRpNQ0CUhpRSlGgVS+poFkdAhYZrOAy2yHV9lChoBmgJaA9DCByastMPqGVAlIaUUpRoFU3oA2gWR0CFtxuuzQeFdX2UKGgGaAloD0MIdGA5QgaBYECUhpRSlGgVTegDaBZHQIW5nqJMxoJ1fZQoaAZoCWgPQwim07oNatpjQJSGlFKUaBVN6ANoFkdAhbqZxaPjn3V9lChoBmgJaA9DCKfOo+L/tWFAlIaUUpRoFU3oA2gWR0CFu0RgZ0jkdX2UKGgGaAloD0MIO6buyi44S0CUhpRSlGgVS+doFkdAhdaQAEMb33V9lChoBmgJaA9DCLdDw2LUk19AlIaUUpRoFU3oA2gWR0CF2vv99+gEdX2UKGgGaAloD0MImbnA5bHCYUCUhpRSlGgVTegDaBZHQIYdYjQiRnx1fZQoaAZoCWgPQwjs+3CQEMleQJSGlFKUaBVN6ANoFkdAhh8McQyylnV9lChoBmgJaA9DCB0hA3n2CGBAlIaUUpRoFU3oA2gWR0CGJEMNtqHodX2UKGgGaAloD0MIwqG3eHiaX0CUhpRSlGgVTegDaBZHQIYmB1/2Cd11fZQoaAZoCWgPQwg3xHjNK6thQJSGlFKUaBVN6ANoFkdAhiksfigkC3V9lChoBmgJaA9DCLvW3qcqC2NAlIaUUpRoFU3oA2gWR0CGK8b4Ju2rdX2UKGgGaAloD0MIRQ2mYXi6YkCUhpRSlGgVTegDaBZHQIYr7brTpgV1fZQoaAZoCWgPQwj5254gscVIQJSGlFKUaBVL/mgWR0CGLv3lCCz1dX2UKGgGaAloD0MIxohEoeV5YkCUhpRSlGgVTegDaBZHQIYwBu/Dcdp1fZQoaAZoCWgPQwi6MNKL2sFkQJSGlFKUaBVN6ANoFkdAhjF57XxvvXV9lChoBmgJaA9DCCj0+pP4vklAlIaUUpRoFUvYaBZHQIY3FPJq7Ad1fZQoaAZoCWgPQwhOJ9nq8kFkQJSGlFKUaBVN6ANoFkdAhjexBmf5DnV9lChoBmgJaA9DCAA8okJ1X2JAlIaUUpRoFU3oA2gWR0CGN/B7eEZjdX2UKGgGaAloD0MIu7n42566RECUhpRSlGgVS+BoFkdAhjw9srNGE3V9lChoBmgJaA9DCAXc8/zppWJAlIaUUpRoFU3oA2gWR0CGYJtj0+TvdX2UKGgGaAloD0MI/KvHfStxZECUhpRSlGgVTegDaBZHQIZkGJ79hql1fZQoaAZoCWgPQwioN6Pmq7BkQJSGlFKUaBVN6ANoFkdAhmTMa0hNd3V9lChoBmgJaA9DCGcMc4I2v2FAlIaUUpRoFU3oA2gWR0CGhTexfOUudX2UKGgGaAloD0MIbmjKTj+uYUCUhpRSlGgVTegDaBZHQIaMBwKjSG91fZQoaAZoCWgPQwhPHhZqzfphQJSGlFKUaBVN6ANoFkdAho1m8M/hVHV9lChoBmgJaA9DCP8FggAZr2NAlIaUUpRoFU3oA2gWR0CGknG2kSEldX2UKGgGaAloD0MIsI9OXfmLY0CUhpRSlGgVTegDaBZHQIaYaCJ40Mx1fZQoaAZoCWgPQwh7LlOTYABkQJSGlFKUaBVN6ANoFkdAhptEORT0hHV9lChoBmgJaA9DCJgW9UluGGNAlIaUUpRoFU3oA2gWR0CGoB7laKUFdX2UKGgGaAloD0MIv9U6cTnmY0CUhpRSlGgVTegDaBZHQIahbtVrAQB1fZQoaAZoCWgPQwhIpG38iTJiQJSGlFKUaBVN6ANoFkdAhqNhIFvAGnV9lChoBmgJaA9DCJf9utOdUzRAlIaUUpRoFUvdaBZHQIaq5vxYq5N1fZQoaAZoCWgPQwiKWMSww3VjQJSGlFKUaBVN6ANoFkdAhqxQlruYyHV9lChoBmgJaA9DCEjeOZShCmRAlIaUUpRoFU3oA2gWR0CGrQAHVwxWdX2UKGgGaAloD0MI83aE04K1XECUhpRSlGgVTegDaBZHQIatSgwoLG91fZQoaAZoCWgPQwh8J2a9GPZlQJSGlFKUaBVN6ANoFkdAhrIMDwH7g3V9lChoBmgJaA9DCLXBiejXoF9AlIaUUpRoFU3oA2gWR0CG23KkEcKgdX2UKGgGaAloD0MIyXISSl99ZUCUhpRSlGgVTegDaBZHQIbd+Yc/+sJ1fZQoaAZoCWgPQwgZda29z9BhQJSGlFKUaBVN6ANoFkdAht530f5k9XV9lChoBmgJaA9DCMK9Mm/VmGNAlIaUUpRoFU3oA2gWR0CG/7d1uBMBdX2UKGgGaAloD0MIzLbT1ogSYECUhpRSlGgVTegDaBZHQIcFs384xUN1fZQoaAZoCWgPQwi0rWadcepjQJSGlFKUaBVN6ANoFkdAhwbVgYxcmnV9lChoBmgJaA9DCLgDdcojimBAlIaUUpRoFU3oA2gWR0CHPxNke6qbdX2UKGgGaAloD0MI2jwOg/lNV0CUhpRSlGgVTegDaBZHQIdCUN6PbPB1fZQoaAZoCWgPQwjggJau4BtkQJSGlFKUaBVN6ANoFkdAh0fBfa6BiHV9lChoBmgJaA9DCO832nHDjGVAlIaUUpRoFU3oA2gWR0CHSTMV1wHadX2UKGgGaAloD0MIkPeqlQm1XUCUhpRSlGgVTegDaBZHQIdLaX+l0o11fZQoaAZoCWgPQwhN1xNdl05iQJSGlFKUaBVN6ANoFkdAh1PkMCtA9nV9lChoBmgJaA9DCKDctu/R82NAlIaUUpRoFU3oA2gWR0CHVYaya/h3dX2UKGgGaAloD0MIRl7WxILgZUCUhpRSlGgVTegDaBZHQIdWV2xIJ7d1fZQoaAZoCWgPQwgW+8vuSbVkQJSGlFKUaBVN6ANoFkdAh1arRrrPdHV9lChoBmgJaA9DCCY5YFeTvGNAlIaUUpRoFU3oA2gWR0CHW9XNke6qdX2UKGgGaAloD0MI1JrmHafwMUCUhpRSlGgVS9ZoFkdAh2JBisny/nV9lChoBmgJaA9DCCdok8MnOWdAlIaUUpRoFU3oA2gWR0CHgUJeE7GOdX2UKGgGaAloD0MI3SVxVkSlZECUhpRSlGgVTegDaBZHQIeEsOwxFiN1fZQoaAZoCWgPQwjSVE/mn7BjQJSGlFKUaBVN6ANoFkdAh4Vc/lhgE3V9lChoBmgJaA9DCNqrj4e+G2NAlIaUUpRoFU3oA2gWR0CHpd4t6HCXdX2UKGgGaAloD0MI9fI7TeZtYUCUhpRSlGgVTegDaBZHQIetXZkCmuV1fZQoaAZoCWgPQwiZ8Ev9vPpiQJSGlFKUaBVN6ANoFkdAh67nkDIRy3V9lChoBmgJaA9DCPQyiuWWXmBAlIaUUpRoFU3oA2gWR0CHuT7JnxrjdX2UKGgGaAloD0MIMh8Q6EwjYkCUhpRSlGgVTegDaBZHQIe7zOE/Spl1fZQoaAZoCWgPQwiLw5lfzbtCQJSGlFKUaBVL1WgWR0CHvtX4CZF5dX2UKGgGaAloD0MI8YPzqWN3YUCUhpRSlGgVTegDaBZHQIe/uukk8ih1fZQoaAZoCWgPQwg5Rx0d17BiQJSGlFKUaBVN6ANoFkdAh8DF/hESd3V9lChoBmgJaA9DCMSY9PdSUCpAlIaUUpRoFUv0aBZHQIfF4zUI9kl1fZQoaAZoCWgPQwjaklUR7lJkQJSGlFKUaBVN6ANoFkdAh8hx0U47zXV9lChoBmgJaA9DCHcU56gj3mNAlIaUUpRoFU3oA2gWR0CHyXpY9xIbdX2UKGgGaAloD0MImDEFaxzXYkCUhpRSlGgVTegDaBZHQIfJ9l05lvt1fZQoaAZoCWgPQwjBVZ5A2MBmQJSGlFKUaBVN6ANoFkdAh8orl/6O53V9lChoBmgJaA9DCKlsWFNZdl5AlIaUUpRoFU3oA2gWR0CHzV4W1twadX2UKGgGaAloD0MIavrsgOs6SkCUhpRSlGgVS85oFkdAh87hBqsU7HV9lChoBmgJaA9DCN+l1CXjFEhAlIaUUpRoFUvPaBZHQIfPtNet0V91fZQoaAZoCWgPQwimQ6fnXXZkQJSGlFKUaBVN6ANoFkdAh9Fp/oaDPHV9lChoBmgJaA9DCA2OkldnymVAlIaUUpRoFU3oA2gWR0CH5ozXSSeRdX2UKGgGaAloD0MI2XbaGhG/ZUCUhpRSlGgVTegDaBZHQIfpF3Ux20R1fZQoaAZoCWgPQwgr24e85WlhQJSGlFKUaBVN6ANoFkdAh+mOYx+KCXV9lChoBmgJaA9DCMlxp3Qw4mJAlIaUUpRoFU3oA2gWR0CICbfShJyydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 155, "n_steps": 2048, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVPQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIYvVXNlcnMvcnVhdm1pMS9Eb2N1bWVudHMvY291cnNlcy9yZWluZm9yY2VtZW50IGxlYXJuaW5nL2RlZXAtcmwtY2xhc3MvcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMhi9Vc2Vycy9ydWF2bWkxL0RvY3VtZW50cy9jb3Vyc2VzL3JlaW5mb3JjZW1lbnQgbGVhcm5pbmcvZGVlcC1ybC1jbGFzcy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 20.6.0: Mon Aug 30 06:12:21 PDT 2021; root:xnu-7195.141.6~3/RELEASE_X86_64", "Python": "3.8.8", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6149660d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd614966160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6149661f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd614966280>", "_build": "<function ActorCriticPolicy._build at 0x7fd614966310>", "forward": "<function ActorCriticPolicy.forward at 0x7fd6149663a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd614966430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd6149664c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd614966550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6149665e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd614966670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd614959f60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651875696.594908, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVPQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIYvVXNlcnMvcnVhdm1pMS9Eb2N1bWVudHMvY291cnNlcy9yZWluZm9yY2VtZW50IGxlYXJuaW5nL2RlZXAtcmwtY2xhc3MvcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMhi9Vc2Vycy9ydWF2bWkxL0RvY3VtZW50cy9jb3Vyc2VzL3JlaW5mb3JjZW1lbnQgbGVhcm5pbmcvZGVlcC1ybC1jbGFzcy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKav8z3KyGg/NjkwPtcf0L5z50Q+NhL2PQAAAAAAAAAAgN1NPVLA47lqRUa6xciGteM2vDnNzGw5AACAPwAAgD8zKSS8XJM2ul50YDtWq0g4uILMOneiDLoAAIA/AACAPwDaSrz2FFW6zXjxOldGpzX8nKu72i4OugAAgD8AAIA/cyScvXuUn7hSFGW6hjgItv0FwDtOL4k5AACAPwAAgD+aAw89j95kuuHGSzorIZq0UlNYuzbyabkAAIA/AACAP8DKKL4oqhA/tjqQPuXwrL4Gkd88AX+uPQAAAAAAAAAAGlJRva6pmroS/7K6IuWZtepYH7ojyM45AACAPwAAgD9m4hg8UvjPueX4ITqUEj+29pIZOy5IOrkAAIA/AACAPzPlBzx7cKi6SvqKu6F5STgR0++6DSQZNgAAgD8AAIA/M9BLvi0gQD9HHKq9dsCivheOHr4xDAI7AAAAAAAAAAAaawQ9roWmunZwpDqr3wI2sp3HOjm1urkAAIA/AACAP5rkprw9ule5pmp6O1GmkjhSNcc7qZjLuQAAgD8AAIA/87WivY9qA7rWy/E6BFPQNavtGLvLMAu6AACAPwAAAADATMC94Vizuh394Dm+5GM1xzYtOi7AAbkAAIA/AACAP2aCAT7xgeE9Yv2Qvo6Fcr6k4u+90iKYvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQdgpVg10XUCUhpRSlIwBbJRN6AOMAXSUR0CIJOQDmr80dX2UKGgGaAloD0MIGof6XVj1YECUhpRSlGgVTegDaBZHQIgsSUu+RHR1fZQoaAZoCWgPQwhT51Hx/+NiQJSGlFKUaBVN6ANoFkdAiDHUmlZX+3V9lChoBmgJaA9DCFzknq5uu2NAlIaUUpRoFU3oA2gWR0CIM6z3yqdZdX2UKGgGaAloD0MINxrAWyDdXUCUhpRSlGgVTegDaBZHQIg34hhYvFp1fZQoaAZoCWgPQwhAM4gP7F9eQJSGlFKUaBVN6ANoFkdAiDzYEGJN03V9lChoBmgJaA9DCH3sLlBSxmhAlIaUUpRoFU3oA2gWR0CIRL+qioKldX2UKGgGaAloD0MIPIcyVEWhZkCUhpRSlGgVTegDaBZHQIhF+n0kGA11fZQoaAZoCWgPQwhSDmYTYOguQJSGlFKUaBVLimgWR0CIUDGKhtcfdX2UKGgGaAloD0MIAtiACPFjYUCUhpRSlGgVTegDaBZHQIhRM0vXbud1fZQoaAZoCWgPQwh0fR8OEi5kQJSGlFKUaBVN6ANoFkdAiFVoWHk92XV9lChoBmgJaA9DCLgf8MAAo2FAlIaUUpRoFU3oA2gWR0CIV7LmITGpdX2UKGgGaAloD0MIaqFkcupgZUCUhpRSlGgVTegDaBZHQIhZvzcynDR1fZQoaAZoCWgPQwh5P26//B1oQJSGlFKUaBVN6ANoFkdAiF7U0vXbunV9lChoBmgJaA9DCJ4Hd2ftMF9AlIaUUpRoFU3oA2gWR0CIZQA6Mir1dX2UKGgGaAloD0MIyXTo9DygZECUhpRSlGgVTegDaBZHQIhma3mV7hN1fZQoaAZoCWgPQwjmIr4TM3lnQJSGlFKUaBVN6ANoFkdAiGp4dyT6i3V9lChoBmgJaA9DCLSs+8dCwFRAlIaUUpRoFUvJaBZHQIhsMuctoSN1fZQoaAZoCWgPQwiQvd798WZhQJSGlFKUaBVN6ANoFkdAiG+tX5nDi3V9lChoBmgJaA9DCJvIzAUuN2RAlIaUUpRoFU3oA2gWR0CIdrVJcxCZdX2UKGgGaAloD0MItd5vtOP1Z0CUhpRSlGgVTegDaBZHQIh7nC66J691fZQoaAZoCWgPQwgGSDSBolVmQJSGlFKUaBVN6ANoFkdAiH3bAtWdVnV9lChoBmgJaA9DCGiz6nO1+2ZAlIaUUpRoFU3oA2gWR0CIgzuAqd6LdX2UKGgGaAloD0MI/WZiuhAqaUCUhpRSlGgVTegDaBZHQIiJm7L+xW11fZQoaAZoCWgPQwgTQ3IycXdiQJSGlFKUaBVN6ANoFkdAiJGlMIu5BnV9lChoBmgJaA9DCPaVB+mpF2VAlIaUUpRoFU3oA2gWR0CIoeIAwPAgdX2UKGgGaAloD0MIPWAeMuXrZkCUhpRSlGgVTegDaBZHQIii8ZUDMeR1fZQoaAZoCWgPQwgzar5KPotgQJSGlFKUaBVN6ANoFkdAiKb61TisGXV9lChoBmgJaA9DCB+i0R1EvmFAlIaUUpRoFU3oA2gWR0CIqS3cYZVGdX2UKGgGaAloD0MIEd+JWS80ZUCUhpRSlGgVTegDaBZHQIirEBuGbkR1fZQoaAZoCWgPQwgE5EuoYHxhQJSGlFKUaBVN6ANoFkdAiLf7d8Aq/nV9lChoBmgJaA9DCD+MEB5tI1xAlIaUUpRoFU3oA2gWR0CIuZsOXmeUdX2UKGgGaAloD0MIQKIJFLHLY0CUhpRSlGgVTegDaBZHQIjyeicoYvZ1fZQoaAZoCWgPQwjbp+Mxg3ZnQJSGlFKUaBVN6ANoFkdAiPRpeE7GN3V9lChoBmgJaA9DCPPjLy3qe2RAlIaUUpRoFU3oA2gWR0CI98UN8VpLdX2UKGgGaAloD0MIXp1jQHYpZECUhpRSlGgVTegDaBZHQIj+isOoYN11fZQoaAZoCWgPQwirlQm/VLZiQJSGlFKUaBVN6ANoFkdAiQPrDZUT+XV9lChoBmgJaA9DCPYNTG4U5GVAlIaUUpRoFU3oA2gWR0CJBfa1TisGdX2UKGgGaAloD0MIYHR5czicZUCUhpRSlGgVTegDaBZHQIkJ9dzGPxR1fZQoaAZoCWgPQwhwlScQdpFoQJSGlFKUaBVN6ANoFkdAiRA+54GD+XV9lChoBmgJaA9DCEC/7988YWJAlIaUUpRoFU3oA2gWR0CJGi5rgwXZdX2UKGgGaAloD0MIpyTrcHRtVUCUhpRSlGgVS8NoFkdAiRwxWcSXdHV9lChoBmgJaA9DCEN0CBwJRGZAlIaUUpRoFU3oA2gWR0CJKbp5/smfdX2UKGgGaAloD0MIajS5GAOpYkCUhpRSlGgVTegDaBZHQIkrDULDye91fZQoaAZoCWgPQwjwv5Xs2FtiQJSGlFKUaBVN6ANoFkdAiS975/LDAXV9lChoBmgJaA9DCFWEm4yqzWFAlIaUUpRoFU3oA2gWR0CJMcm0mdAgdX2UKGgGaAloD0MIpikCnF7gYkCUhpRSlGgVTegDaBZHQIkzzS/j81p1fZQoaAZoCWgPQwgw8x38xNxnQJSGlFKUaBVN6ANoFkdAiUGoAGSpznV9lChoBmgJaA9DCOS7lLpkN2BAlIaUUpRoFU3oA2gWR0CJQ7KVY6n0dX2UKGgGaAloD0MIU0FF1S++YkCUhpRSlGgVTegDaBZHQIlIb7Ikqtp1fZQoaAZoCWgPQwigUE8fAXNkQJSGlFKUaBVN6ANoFkdAiUpWS2Yv4HV9lChoBmgJaA9DCMLAc+9hjmhAlIaUUpRoFU3oA2gWR0CJTcpHZsbedX2UKGgGaAloD0MIKQge314BZECUhpRSlGgVTegDaBZHQIlVKtDD0lJ1fZQoaAZoCWgPQwg0Tdh+skVlQJSGlFKUaBVN6ANoFkdAiVpaE8JUpHV9lChoBmgJaA9DCH6nyYy3fmJAlIaUUpRoFU3oA2gWR0CJXF3Qla8pdX2UKGgGaAloD0MIa9WuCWkuX0CUhpRSlGgVTegDaBZHQIlpn5FgDzR1fZQoaAZoCWgPQwj3ViQmqD5oQJSGlFKUaBVN6ANoFkdAiXSWMsH0LHV9lChoBmgJaA9DCGpLHeT1xGJAlIaUUpRoFU3oA2gWR0CJdrJQLux9dX2UKGgGaAloD0MIj4tqEVGhZECUhpRSlGgVTegDaBZHQImBvl+3H7x1fZQoaAZoCWgPQwhEbRtGwepkQJSGlFKUaBVN6ANoFkdAiYKyBClabHV9lChoBmgJaA9DCIaOHVRiN2JAlIaUUpRoFU3oA2gWR0CJhiPMB6rvdX2UKGgGaAloD0MIIv32deCTY0CUhpRSlGgVTegDaBZHQImIRyIYWLx1fZQoaAZoCWgPQwi2nbZGBDVgQJSGlFKUaBVN6ANoFkdAiYpSvcJtznV9lChoBmgJaA9DCEAUzJgC1WNAlIaUUpRoFU3oA2gWR0CJlmkZ75VPdX2UKGgGaAloD0MIBBxClRoAYECUhpRSlGgVTegDaBZHQImYDZYgaFV1fZQoaAZoCWgPQwgKoBhZMoVpQJSGlFKUaBVN6ANoFkdAiZyNJvo/zXV9lChoBmgJaA9DCK+ytimeZmRAlIaUUpRoFU3oA2gWR0CJ2dUn5SFXdX2UKGgGaAloD0MIIhrdQWw6ZUCUhpRSlGgVTegDaBZHQIndpO+IuXh1fZQoaAZoCWgPQwh/iXjrfIVjQJSGlFKUaBVN6ANoFkdAieVZWJaaC3V9lChoBmgJaA9DCJ7PgHqzxGJAlIaUUpRoFU3oA2gWR0CJ6t3jdYW+dX2UKGgGaAloD0MI1jpxOV7dZUCUhpRSlGgVTegDaBZHQInsjZxrBTJ1fZQoaAZoCWgPQwiBQj19BHRkQJSGlFKUaBVN6ANoFkdAifYWrwOOKnV9lChoBmgJaA9DCJaxoZt9NmVAlIaUUpRoFU3oA2gWR0CJ/ql5WzWxdX2UKGgGaAloD0MImrLTD+rHY0CUhpRSlGgVTegDaBZHQIoAuaOPvKF1fZQoaAZoCWgPQwi3CIz1DeNiQJSGlFKUaBVN6ANoFkdAigr45Lh73XV9lChoBmgJaA9DCDzdeeI5WFtAlIaUUpRoFU3oA2gWR0CKC+5NGmUGdX2UKGgGaAloD0MIPPceLjkHZECUhpRSlGgVTegDaBZHQIoP4NNJvpB1fZQoaAZoCWgPQwhFRgckYSVhQJSGlFKUaBVN6ANoFkdAihJHTI/7i3V9lChoBmgJaA9DCBKhEWxch2VAlIaUUpRoFU3oA2gWR0CKFSCtA9mpdX2UKGgGaAloD0MIeXO4VvvwYECUhpRSlGgVTegDaBZHQIolzLbHp8p1fZQoaAZoCWgPQwinWguzUApnQJSGlFKUaBVN6ANoFkdAiigCWmgrY3V9lChoBmgJaA9DCKd1G9T+6GZAlIaUUpRoFU3oA2gWR0CKLZOD8LrpdX2UKGgGaAloD0MIpFGBk22RY0CUhpRSlGgVTegDaBZHQIowNfXwsoV1fZQoaAZoCWgPQwjej9svn4ReQJSGlFKUaBVN6ANoFkdAijRwQ+UyHnV9lChoBmgJaA9DCAvw3eaNs2dAlIaUUpRoFU3oA2gWR0CKPR5dnkDIdX2UKGgGaAloD0MI5sx2hb5CYkCUhpRSlGgVTegDaBZHQIpCbDl5nlJ1fZQoaAZoCWgPQwj04VmCjNFhQJSGlFKUaBVN6ANoFkdAikQCzTnaFnV9lChoBmgJaA9DCPM5d7teKV1AlIaUUpRoFU3oA2gWR0CKTGhOgxrSdX2UKGgGaAloD0MIKhprf2cBY0CUhpRSlGgVTegDaBZHQIpUXnuAqd91fZQoaAZoCWgPQwgabOo8quxiQJSGlFKUaBVN6ANoFkdAilbPovBacXV9lChoBmgJaA9DCNdtUPstyWVAlIaUUpRoFU3oA2gWR0CKYMuOCGvfdX2UKGgGaAloD0MIqP3WTpQlZECUhpRSlGgVTegDaBZHQIphy1b7j1h1fZQoaAZoCWgPQwgAOPbsue1lQJSGlFKUaBVN6ANoFkdAimWn/95yEXV9lChoBmgJaA9DCJBoAkWsO2VAlIaUUpRoFU3oA2gWR0CKZ+FbFCLNdX2UKGgGaAloD0MIjX40nDKKZECUhpRSlGgVTegDaBZHQIpqgZflZHN1fZQoaAZoCWgPQwi0c5oF2gZSQJSGlFKUaBVLu2gWR0CKcLVaOgg6dX2UKGgGaAloD0MIMsozL4eNZECUhpRSlGgVTegDaBZHQIp6glpoK2N1fZQoaAZoCWgPQwgPfAxWnGZjQJSGlFKUaBVN6ANoFkdAinyI1cdHUnV9lChoBmgJaA9DCOaV620zLmVAlIaUUpRoFU3oA2gWR0CKgTxQzk6tdX2UKGgGaAloD0MITb9EvPU+Z0CUhpRSlGgVTegDaBZHQIqDHE61b7l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 217, "n_steps": 2048, "gamma": 0.998, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 7, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVPQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIYvVXNlcnMvcnVhdm1pMS9Eb2N1bWVudHMvY291cnNlcy9yZWluZm9yY2VtZW50IGxlYXJuaW5nL2RlZXAtcmwtY2xhc3MvcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMhi9Vc2Vycy9ydWF2bWkxL0RvY3VtZW50cy9jb3Vyc2VzL3JlaW5mb3JjZW1lbnQgbGVhcm5pbmcvZGVlcC1ybC1jbGFzcy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 20.6.0: Mon Aug 30 06:12:21 PDT 2021; root:xnu-7195.141.6~3/RELEASE_X86_64", "Python": "3.8.8", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a53f3742e8a1e18f76fa795a62bea456b673e34ea09e0c5241d03b494c86ca8a
|
3 |
+
size 144099
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,21 +69,21 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.998,
|
81 |
-
"gae_lambda": 0.
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVPQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIYvVXNlcnMvcnVhdm1pMS9Eb2N1bWVudHMvY291cnNlcy9yZWluZm9yY2VtZW50IGxlYXJuaW5nL2RlZXAtcmwtY2xhc3MvcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMhi9Vc2Vycy9ydWF2bWkxL0RvY3VtZW50cy9jb3Vyc2VzL3JlaW5mb3JjZW1lbnQgbGVhcm5pbmcvZGVlcC1ybC1jbGFzcy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6149660d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd614966160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6149661f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd614966280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd614966310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd6149663a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd614966430>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd6149664c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd614966550>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6149665e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd614966670>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd614959f60>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651875696.594908,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKav8z3KyGg/NjkwPtcf0L5z50Q+NhL2PQAAAAAAAAAAgN1NPVLA47lqRUa6xciGteM2vDnNzGw5AACAPwAAgD8zKSS8XJM2ul50YDtWq0g4uILMOneiDLoAAIA/AACAPwDaSrz2FFW6zXjxOldGpzX8nKu72i4OugAAgD8AAIA/cyScvXuUn7hSFGW6hjgItv0FwDtOL4k5AACAPwAAgD+aAw89j95kuuHGSzorIZq0UlNYuzbyabkAAIA/AACAP8DKKL4oqhA/tjqQPuXwrL4Gkd88AX+uPQAAAAAAAAAAGlJRva6pmroS/7K6IuWZtepYH7ojyM45AACAPwAAgD9m4hg8UvjPueX4ITqUEj+29pIZOy5IOrkAAIA/AACAPzPlBzx7cKi6SvqKu6F5STgR0++6DSQZNgAAgD8AAIA/M9BLvi0gQD9HHKq9dsCivheOHr4xDAI7AAAAAAAAAAAaawQ9roWmunZwpDqr3wI2sp3HOjm1urkAAIA/AACAP5rkprw9ule5pmp6O1GmkjhSNcc7qZjLuQAAgD8AAIA/87WivY9qA7rWy/E6BFPQNavtGLvLMAu6AACAPwAAAADATMC94Vizuh394Dm+5GM1xzYtOi7AAbkAAIA/AACAP2aCAT7xgeE9Yv2Qvo6Fcr6k4u+90iKYvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQdgpVg10XUCUhpRSlIwBbJRN6AOMAXSUR0CIJOQDmr80dX2UKGgGaAloD0MIGof6XVj1YECUhpRSlGgVTegDaBZHQIgsSUu+RHR1fZQoaAZoCWgPQwhT51Hx/+NiQJSGlFKUaBVN6ANoFkdAiDHUmlZX+3V9lChoBmgJaA9DCFzknq5uu2NAlIaUUpRoFU3oA2gWR0CIM6z3yqdZdX2UKGgGaAloD0MINxrAWyDdXUCUhpRSlGgVTegDaBZHQIg34hhYvFp1fZQoaAZoCWgPQwhAM4gP7F9eQJSGlFKUaBVN6ANoFkdAiDzYEGJN03V9lChoBmgJaA9DCH3sLlBSxmhAlIaUUpRoFU3oA2gWR0CIRL+qioKldX2UKGgGaAloD0MIPIcyVEWhZkCUhpRSlGgVTegDaBZHQIhF+n0kGA11fZQoaAZoCWgPQwhSDmYTYOguQJSGlFKUaBVLimgWR0CIUDGKhtcfdX2UKGgGaAloD0MIAtiACPFjYUCUhpRSlGgVTegDaBZHQIhRM0vXbud1fZQoaAZoCWgPQwh0fR8OEi5kQJSGlFKUaBVN6ANoFkdAiFVoWHk92XV9lChoBmgJaA9DCLgf8MAAo2FAlIaUUpRoFU3oA2gWR0CIV7LmITGpdX2UKGgGaAloD0MIaqFkcupgZUCUhpRSlGgVTegDaBZHQIhZvzcynDR1fZQoaAZoCWgPQwh5P26//B1oQJSGlFKUaBVN6ANoFkdAiF7U0vXbunV9lChoBmgJaA9DCJ4Hd2ftMF9AlIaUUpRoFU3oA2gWR0CIZQA6Mir1dX2UKGgGaAloD0MIyXTo9DygZECUhpRSlGgVTegDaBZHQIhma3mV7hN1fZQoaAZoCWgPQwjmIr4TM3lnQJSGlFKUaBVN6ANoFkdAiGp4dyT6i3V9lChoBmgJaA9DCLSs+8dCwFRAlIaUUpRoFUvJaBZHQIhsMuctoSN1fZQoaAZoCWgPQwiQvd798WZhQJSGlFKUaBVN6ANoFkdAiG+tX5nDi3V9lChoBmgJaA9DCJvIzAUuN2RAlIaUUpRoFU3oA2gWR0CIdrVJcxCZdX2UKGgGaAloD0MItd5vtOP1Z0CUhpRSlGgVTegDaBZHQIh7nC66J691fZQoaAZoCWgPQwgGSDSBolVmQJSGlFKUaBVN6ANoFkdAiH3bAtWdVnV9lChoBmgJaA9DCGiz6nO1+2ZAlIaUUpRoFU3oA2gWR0CIgzuAqd6LdX2UKGgGaAloD0MI/WZiuhAqaUCUhpRSlGgVTegDaBZHQIiJm7L+xW11fZQoaAZoCWgPQwgTQ3IycXdiQJSGlFKUaBVN6ANoFkdAiJGlMIu5BnV9lChoBmgJaA9DCPaVB+mpF2VAlIaUUpRoFU3oA2gWR0CIoeIAwPAgdX2UKGgGaAloD0MIPWAeMuXrZkCUhpRSlGgVTegDaBZHQIii8ZUDMeR1fZQoaAZoCWgPQwgzar5KPotgQJSGlFKUaBVN6ANoFkdAiKb61TisGXV9lChoBmgJaA9DCB+i0R1EvmFAlIaUUpRoFU3oA2gWR0CIqS3cYZVGdX2UKGgGaAloD0MIEd+JWS80ZUCUhpRSlGgVTegDaBZHQIirEBuGbkR1fZQoaAZoCWgPQwgE5EuoYHxhQJSGlFKUaBVN6ANoFkdAiLf7d8Aq/nV9lChoBmgJaA9DCD+MEB5tI1xAlIaUUpRoFU3oA2gWR0CIuZsOXmeUdX2UKGgGaAloD0MIQKIJFLHLY0CUhpRSlGgVTegDaBZHQIjyeicoYvZ1fZQoaAZoCWgPQwjbp+Mxg3ZnQJSGlFKUaBVN6ANoFkdAiPRpeE7GN3V9lChoBmgJaA9DCPPjLy3qe2RAlIaUUpRoFU3oA2gWR0CI98UN8VpLdX2UKGgGaAloD0MIXp1jQHYpZECUhpRSlGgVTegDaBZHQIj+isOoYN11fZQoaAZoCWgPQwirlQm/VLZiQJSGlFKUaBVN6ANoFkdAiQPrDZUT+XV9lChoBmgJaA9DCPYNTG4U5GVAlIaUUpRoFU3oA2gWR0CJBfa1TisGdX2UKGgGaAloD0MIYHR5czicZUCUhpRSlGgVTegDaBZHQIkJ9dzGPxR1fZQoaAZoCWgPQwhwlScQdpFoQJSGlFKUaBVN6ANoFkdAiRA+54GD+XV9lChoBmgJaA9DCEC/7988YWJAlIaUUpRoFU3oA2gWR0CJGi5rgwXZdX2UKGgGaAloD0MIpyTrcHRtVUCUhpRSlGgVS8NoFkdAiRwxWcSXdHV9lChoBmgJaA9DCEN0CBwJRGZAlIaUUpRoFU3oA2gWR0CJKbp5/smfdX2UKGgGaAloD0MIajS5GAOpYkCUhpRSlGgVTegDaBZHQIkrDULDye91fZQoaAZoCWgPQwjwv5Xs2FtiQJSGlFKUaBVN6ANoFkdAiS975/LDAXV9lChoBmgJaA9DCFWEm4yqzWFAlIaUUpRoFU3oA2gWR0CJMcm0mdAgdX2UKGgGaAloD0MIpikCnF7gYkCUhpRSlGgVTegDaBZHQIkzzS/j81p1fZQoaAZoCWgPQwgw8x38xNxnQJSGlFKUaBVN6ANoFkdAiUGoAGSpznV9lChoBmgJaA9DCOS7lLpkN2BAlIaUUpRoFU3oA2gWR0CJQ7KVY6n0dX2UKGgGaAloD0MIU0FF1S++YkCUhpRSlGgVTegDaBZHQIlIb7Ikqtp1fZQoaAZoCWgPQwigUE8fAXNkQJSGlFKUaBVN6ANoFkdAiUpWS2Yv4HV9lChoBmgJaA9DCMLAc+9hjmhAlIaUUpRoFU3oA2gWR0CJTcpHZsbedX2UKGgGaAloD0MIKQge314BZECUhpRSlGgVTegDaBZHQIlVKtDD0lJ1fZQoaAZoCWgPQwg0Tdh+skVlQJSGlFKUaBVN6ANoFkdAiVpaE8JUpHV9lChoBmgJaA9DCH6nyYy3fmJAlIaUUpRoFU3oA2gWR0CJXF3Qla8pdX2UKGgGaAloD0MIa9WuCWkuX0CUhpRSlGgVTegDaBZHQIlpn5FgDzR1fZQoaAZoCWgPQwj3ViQmqD5oQJSGlFKUaBVN6ANoFkdAiXSWMsH0LHV9lChoBmgJaA9DCGpLHeT1xGJAlIaUUpRoFU3oA2gWR0CJdrJQLux9dX2UKGgGaAloD0MIj4tqEVGhZECUhpRSlGgVTegDaBZHQImBvl+3H7x1fZQoaAZoCWgPQwhEbRtGwepkQJSGlFKUaBVN6ANoFkdAiYKyBClabHV9lChoBmgJaA9DCIaOHVRiN2JAlIaUUpRoFU3oA2gWR0CJhiPMB6rvdX2UKGgGaAloD0MIIv32deCTY0CUhpRSlGgVTegDaBZHQImIRyIYWLx1fZQoaAZoCWgPQwi2nbZGBDVgQJSGlFKUaBVN6ANoFkdAiYpSvcJtznV9lChoBmgJaA9DCEAUzJgC1WNAlIaUUpRoFU3oA2gWR0CJlmkZ75VPdX2UKGgGaAloD0MIBBxClRoAYECUhpRSlGgVTegDaBZHQImYDZYgaFV1fZQoaAZoCWgPQwgKoBhZMoVpQJSGlFKUaBVN6ANoFkdAiZyNJvo/zXV9lChoBmgJaA9DCK+ytimeZmRAlIaUUpRoFU3oA2gWR0CJ2dUn5SFXdX2UKGgGaAloD0MIIhrdQWw6ZUCUhpRSlGgVTegDaBZHQIndpO+IuXh1fZQoaAZoCWgPQwh/iXjrfIVjQJSGlFKUaBVN6ANoFkdAieVZWJaaC3V9lChoBmgJaA9DCJ7PgHqzxGJAlIaUUpRoFU3oA2gWR0CJ6t3jdYW+dX2UKGgGaAloD0MI1jpxOV7dZUCUhpRSlGgVTegDaBZHQInsjZxrBTJ1fZQoaAZoCWgPQwiBQj19BHRkQJSGlFKUaBVN6ANoFkdAifYWrwOOKnV9lChoBmgJaA9DCJaxoZt9NmVAlIaUUpRoFU3oA2gWR0CJ/ql5WzWxdX2UKGgGaAloD0MImrLTD+rHY0CUhpRSlGgVTegDaBZHQIoAuaOPvKF1fZQoaAZoCWgPQwi3CIz1DeNiQJSGlFKUaBVN6ANoFkdAigr45Lh73XV9lChoBmgJaA9DCDzdeeI5WFtAlIaUUpRoFU3oA2gWR0CKC+5NGmUGdX2UKGgGaAloD0MIPPceLjkHZECUhpRSlGgVTegDaBZHQIoP4NNJvpB1fZQoaAZoCWgPQwhFRgckYSVhQJSGlFKUaBVN6ANoFkdAihJHTI/7i3V9lChoBmgJaA9DCBKhEWxch2VAlIaUUpRoFU3oA2gWR0CKFSCtA9mpdX2UKGgGaAloD0MIeXO4VvvwYECUhpRSlGgVTegDaBZHQIolzLbHp8p1fZQoaAZoCWgPQwinWguzUApnQJSGlFKUaBVN6ANoFkdAiigCWmgrY3V9lChoBmgJaA9DCKd1G9T+6GZAlIaUUpRoFU3oA2gWR0CKLZOD8LrpdX2UKGgGaAloD0MIpFGBk22RY0CUhpRSlGgVTegDaBZHQIowNfXwsoV1fZQoaAZoCWgPQwjej9svn4ReQJSGlFKUaBVN6ANoFkdAijRwQ+UyHnV9lChoBmgJaA9DCAvw3eaNs2dAlIaUUpRoFU3oA2gWR0CKPR5dnkDIdX2UKGgGaAloD0MI5sx2hb5CYkCUhpRSlGgVTegDaBZHQIpCbDl5nlJ1fZQoaAZoCWgPQwj04VmCjNFhQJSGlFKUaBVN6ANoFkdAikQCzTnaFnV9lChoBmgJaA9DCPM5d7teKV1AlIaUUpRoFU3oA2gWR0CKTGhOgxrSdX2UKGgGaAloD0MIKhprf2cBY0CUhpRSlGgVTegDaBZHQIpUXnuAqd91fZQoaAZoCWgPQwgabOo8quxiQJSGlFKUaBVN6ANoFkdAilbPovBacXV9lChoBmgJaA9DCNdtUPstyWVAlIaUUpRoFU3oA2gWR0CKYMuOCGvfdX2UKGgGaAloD0MIqP3WTpQlZECUhpRSlGgVTegDaBZHQIphy1b7j1h1fZQoaAZoCWgPQwgAOPbsue1lQJSGlFKUaBVN6ANoFkdAimWn/95yEXV9lChoBmgJaA9DCJBoAkWsO2VAlIaUUpRoFU3oA2gWR0CKZ+FbFCLNdX2UKGgGaAloD0MIjX40nDKKZECUhpRSlGgVTegDaBZHQIpqgZflZHN1fZQoaAZoCWgPQwi0c5oF2gZSQJSGlFKUaBVLu2gWR0CKcLVaOgg6dX2UKGgGaAloD0MIMsozL4eNZECUhpRSlGgVTegDaBZHQIp6glpoK2N1fZQoaAZoCWgPQwgPfAxWnGZjQJSGlFKUaBVN6ANoFkdAinyI1cdHUnV9lChoBmgJaA9DCOaV620zLmVAlIaUUpRoFU3oA2gWR0CKgTxQzk6tdX2UKGgGaAloD0MITb9EvPU+Z0CUhpRSlGgVTegDaBZHQIqDHE61b7l1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 217,
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.998,
|
81 |
+
"gae_lambda": 0.99,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
+
"n_epochs": 7,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVPQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIYvVXNlcnMvcnVhdm1pMS9Eb2N1bWVudHMvY291cnNlcy9yZWluZm9yY2VtZW50IGxlYXJuaW5nL2RlZXAtcmwtY2xhc3MvcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMhi9Vc2Vycy9ydWF2bWkxL0RvY3VtZW50cy9jb3Vyc2VzL3JlaW5mb3JjZW1lbnQgbGVhcm5pbmcvZGVlcC1ybC1jbGFzcy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84637
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c29add9811014111bf05c006f7414392bfc296b594aff7616c1e0ce3395d856a
|
3 |
size 84637
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43073
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44df235cc39ac018d0c8af7e1ff8ef8c185fe689396bc76eead8ae95be8748c6
|
3 |
size 43073
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8af0367eec7fe6163596585119f2b0b24a5d2cd795d341314e27b1ab4bad2c0b
|
3 |
+
size 346794
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 267.464066065351, "std_reward": 18.29248344830936, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T01:36:10.923321"}
|