Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Examples
|
2 |
+
|
3 |
+
Here are some examples of how to use this model in Python:
|
4 |
+
|
5 |
+
```python
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("Rel8ed/cleantech-cls")
|
9 |
+
model = AutoModelForCausalLM.from_pretrained("Rel8ed/cleantech-cls")
|
10 |
+
|
11 |
+
input_prompt = "[METAKEYWORD] innovation, technology, clean energy [TITLE] innovative clean energy solutions [META]" \
|
12 |
+
"leading provider of clean energy solutions. [ABOUT] we are committed to reducing environmental impact through" \
|
13 |
+
"cutting-edge clean energy solutions. [HOME] welcome to our website where we explore innovative technologies for a sustainable future."
|
14 |
+
|
15 |
+
inputs = tokenizer.encode(input_prompt, return_tensors='pt')
|
16 |
+
output = model.generate(inputs, max_length=50, num_return_sequences=5)
|
17 |
+
|
18 |
+
print("Generated text:")
|
19 |
+
for i, output in enumerate(outputs):
|
20 |
+
print(f"{i+1}: {tokenizer.decode(output, skip_special_tokens=True)}")
|
21 |
+
```
|
22 |
+
|
23 |
+
## Preprocess text
|
24 |
+
|
25 |
+
```python
|
26 |
+
import re
|
27 |
+
|
28 |
+
def normalize(s, truncate=100):
|
29 |
+
# Replace "\n" with " "
|
30 |
+
s = s.replace("\n", " ")
|
31 |
+
|
32 |
+
# Keep only letters (including accented letters) and spaces
|
33 |
+
s = re.sub(r"[^a-zA-Zà-üÀ-Ü ]", "", s)
|
34 |
+
|
35 |
+
# Split the string into words, truncate to the first 100 words, and join back into a string
|
36 |
+
words = s.split()
|
37 |
+
truncated = words[:truncate]
|
38 |
+
s = " ".join(truncated)
|
39 |
+
|
40 |
+
# Remove additional spaces
|
41 |
+
s = re.sub(r"\s+", " ", s)
|
42 |
+
|
43 |
+
return s
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
def create_full_text(homepageText,metakeywords = "", title = "", meta = "", aboutText = "", truncate_limit=100):
|
48 |
+
return (
|
49 |
+
"[METAKEYWORD] " + normalize(metakeywords, truncate=truncate_limit) +
|
50 |
+
" [TITLE] " + normalize(title, truncate=truncate_limit) +
|
51 |
+
" [META] " + normalize(meta, truncate=truncate_limit) +
|
52 |
+
" [ABOUT] " + normalize(aboutText, truncate=truncate_limit) +
|
53 |
+
# Assuming we want to normalize homepageText with a much higher limit or no truncation
|
54 |
+
" [HOME] " + normalize(homepageText, truncate=truncate_limit)
|
55 |
+
).strip()
|
56 |
+
|
57 |
+
# Sample raw inputs
|
58 |
+
metakeywords = "Green Energy, Sustainability"
|
59 |
+
meta = "Exploring innovative solutions for a sustainable future."
|
60 |
+
homepageText = "Welcome to our green energy platform where we share insights and innovations..."
|
61 |
+
aboutText = "We are committed to advancing green energy solutions through research and development."
|
62 |
+
title = "Green Energy Innovations"
|
63 |
+
|
64 |
+
# Applying your preprocessing steps
|
65 |
+
full_text = create_full_text(metakeywords, title, meta, aboutText, homepageText)
|
66 |
+
|
67 |
+
print(full_text)
|
68 |
+
```
|
69 |
+
|
70 |
+
## Simple usage
|
71 |
+
|
72 |
+
```python
|
73 |
+
from transformers import pipeline
|
74 |
+
import re
|
75 |
+
|
76 |
+
model_name_or_path = "Rel8ed/cleantech-cls"
|
77 |
+
|
78 |
+
classifier = pipeline('text-classification', model=model_name_or_path)
|
79 |
+
|
80 |
+
def normalize(s, truncate=100):
|
81 |
+
s = s.replace("\n", " ")
|
82 |
+
s = re.sub(r"[^a-zA-Zà-üÀ-Ü ]", "", s)
|
83 |
+
words = s.split()
|
84 |
+
truncated = words[:truncate]
|
85 |
+
s = " ".join(truncated)
|
86 |
+
s = re.sub(r"\s+", " ", s)
|
87 |
+
return s
|
88 |
+
|
89 |
+
|
90 |
+
def create_full_text(homepageText,metakeywords = "", title = "", meta = "", aboutText = "", truncate_limit=100):
|
91 |
+
return (
|
92 |
+
"[METAKEYWORD] " + normalize(metakeywords, truncate=truncate_limit) +
|
93 |
+
" [TITLE] " + normalize(title, truncate=truncate_limit) +
|
94 |
+
" [META] " + normalize(meta, truncate=truncate_limit) +
|
95 |
+
" [ABOUT] " + normalize(aboutText, truncate=truncate_limit) +
|
96 |
+
# Assuming we want to normalize homepageText with a much higher limit or no truncation
|
97 |
+
" [HOME] " + normalize(homepageText, truncate=truncate_limit)
|
98 |
+
).strip()
|
99 |
+
|
100 |
+
text = "Welcome to our green energy platform where we share insights and innovations"
|
101 |
+
|
102 |
+
predictions = classifier(create_full_text(text))
|
103 |
+
|
104 |
+
```
|