--- widget: - text: "[METAKEYWORD] [TITLE] [META] [ABOUT] [HOME] welcome to our website where we explore innovative technologies for a sustainable future." output: - label: POSITIVE score: 0.8 - label: NEGATIVE score: 0.2 - text: "[METAKEYWORD] [TITLE] [META] [ABOUT] [HOME] This is cell phone marketplace" output: - label: POSITIVE score: 0.1 - label: NEGATIVE score: 0.9 --- ## Examples Here are some examples of how to use this model in Python: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Rel8ed/cleantech-cls") model = AutoModelForCausalLM.from_pretrained("Rel8ed/cleantech-cls") input_prompt = "[METAKEYWORD] innovation, technology, clean energy [TITLE] innovative clean energy solutions [META]" \ "leading provider of clean energy solutions. [ABOUT] we are committed to reducing environmental impact through" \ "cutting-edge clean energy solutions. [HOME] welcome to our website where we explore innovative technologies for a sustainable future." inputs = tokenizer.encode(input_prompt, return_tensors='pt') output = model.generate(inputs, max_length=50, num_return_sequences=5) print("Generated text:") for i, output in enumerate(outputs): print(f"{i+1}: {tokenizer.decode(output, skip_special_tokens=True)}") ``` ## Preprocess text ```python import re def normalize(s, truncate=100): # Replace "\n" with " " s = s.replace("\n", " ") # Keep only letters (including accented letters) and spaces s = re.sub(r"[^a-zA-Zà-üÀ-Ü ]", "", s) # Split the string into words, truncate to the first 100 words, and join back into a string words = s.split() truncated = words[:truncate] s = " ".join(truncated) # Remove additional spaces s = re.sub(r"\s+", " ", s) return s def create_full_text(homepageText,metakeywords = "", title = "", meta = "", aboutText = "", truncate_limit=100): return ( "[METAKEYWORD] " + normalize(metakeywords, truncate=truncate_limit) + " [TITLE] " + normalize(title, truncate=truncate_limit) + " [META] " + normalize(meta, truncate=truncate_limit) + " [ABOUT] " + normalize(aboutText, truncate=truncate_limit) + # Assuming we want to normalize homepageText with a much higher limit or no truncation " [HOME] " + normalize(homepageText, truncate=truncate_limit) ).strip() # Sample raw inputs metakeywords = "Green Energy, Sustainability" meta = "Exploring innovative solutions for a sustainable future." homepageText = "Welcome to our green energy platform where we share insights and innovations..." aboutText = "We are committed to advancing green energy solutions through research and development." title = "Green Energy Innovations" # Applying your preprocessing steps full_text = create_full_text(metakeywords, title, meta, aboutText, homepageText) print(full_text) ``` ## Simple usage ```python from transformers import pipeline import re model_name_or_path = "Rel8ed/cleantech-cls" classifier = pipeline('text-classification', model=model_name_or_path) def normalize(s, truncate=100): s = s.replace("\n", " ") s = re.sub(r"[^a-zA-Zà-üÀ-Ü ]", "", s) words = s.split() truncated = words[:truncate] s = " ".join(truncated) s = re.sub(r"\s+", " ", s) return s def create_full_text(homepageText,metakeywords = "", title = "", meta = "", aboutText = "", truncate_limit=100): return ( "[METAKEYWORD] " + normalize(metakeywords, truncate=truncate_limit) + " [TITLE] " + normalize(title, truncate=truncate_limit) + " [META] " + normalize(meta, truncate=truncate_limit) + " [ABOUT] " + normalize(aboutText, truncate=truncate_limit) + # Assuming we want to normalize homepageText with a much higher limit or no truncation " [HOME] " + normalize(homepageText, truncate=truncate_limit) ).strip() text = "Welcome to our green energy platform where we share insights and innovations" predictions = classifier(create_full_text(text)) ```