--- language: - ja library_name: transformers pipeline_tag: text-generation --- # Model Card for Model ID This model can be used to convert Japanese IPA back to normal text. ## Model ### Usage For vLLM use this: Respair/Test_QwJP in the terminal: ```bash python -m vllm.entrypoints.openai.api_server --model Respair/Japanese_Phoneme_to_Grapheme_LLM--port 8000 ``` now you can simply use it: ```python # pip install vllm from openai import OpenAI openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) model_name = "Respair/Test_QwJP" def p2g(param): chat_response = client.chat.completions.create( model=model_name, max_tokens=512, temperature=0.01, messages=[ {"role": "user", "content": f"{prompt}"}] ) return chat_response.choices[0].message.content prompt= f""" Turn IPA to Japanese: geɴ'iɴ? sonna fɯɯ ni ɕiɽoi hebi no geŋkakɯ ga, omae no ɕɯɯi ni naɴ do mo naɴ do mo aɽawaɽerɯ, kiʔkake na no ka naɴ na no ka? mi ni oboeʔtsɯ no ka? """ result= p2g(prompt) print(result) ``` ...or simply through HF transformers: ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Respair/Japanese_Phoneme_to_Grapheme_LLM", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Respair/Japanese_Phoneme_to_Grapheme_LLM") tokenizer.pad_token = "<|endoftext|>" tokenizer.bos_token = "<|endoftext|>" tokenizer.eos_token = "<|im_end|>" prompt = "Turn IPA to Japanese: geɴ'iɴ? sonna fɯɯ ni ɕiɽoi hebi no geŋkakɯ ga, omae no ɕɯɯi ni naɴ do mo naɴ do mo aɽawaɽerɯ, kiʔkake na no ka naɴ na no ka? mi ni oboeʔtsɯ no ka?" messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, temperature=0.1, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] response ```