File size: 12,848 Bytes
bcdb559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
from math import pi
from typing import Any, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from torch import Tensor
from tqdm import tqdm

from .utils import default

""" Distributions """


class Distribution:
    """Interface used by different distributions"""

    def __call__(self, num_samples: int, device: torch.device):
        raise NotImplementedError()


class UniformDistribution(Distribution):
    def __init__(self, vmin: float = 0.0, vmax: float = 1.0):
        super().__init__()
        self.vmin, self.vmax = vmin, vmax

    def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
        vmax, vmin = self.vmax, self.vmin
        return (vmax - vmin) * torch.rand(num_samples, device=device) + vmin


""" Diffusion Methods """


def pad_dims(x: Tensor, ndim: int) -> Tensor:
    # Pads additional ndims to the right of the tensor
    return x.view(*x.shape, *((1,) * ndim))


def clip(x: Tensor, dynamic_threshold: float = 0.0):
    if dynamic_threshold == 0.0:
        return x.clamp(-1.0, 1.0)
    else:
        # Dynamic thresholding
        # Find dynamic threshold quantile for each batch
        x_flat = rearrange(x, "b ... -> b (...)")
        scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
        # Clamp to a min of 1.0
        scale.clamp_(min=1.0)
        # Clamp all values and scale
        scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
        x = x.clamp(-scale, scale) / scale
        return x


def extend_dim(x: Tensor, dim: int):
    # e.g. if dim = 4: shape [b] => [b, 1, 1, 1],
    return x.view(*x.shape + (1,) * (dim - x.ndim))


class Diffusion(nn.Module):
    """Interface used by different diffusion methods"""

    pass


class VDiffusion(Diffusion):
    def __init__(
        self, net: nn.Module, sigma_distribution: Distribution = UniformDistribution(), loss_fn: Any = F.mse_loss
    ):
        super().__init__()
        self.net = net
        self.sigma_distribution = sigma_distribution
        self.loss_fn = loss_fn

    def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
        angle = sigmas * pi / 2
        alpha, beta = torch.cos(angle), torch.sin(angle)
        return alpha, beta

    def forward(self, x: Tensor, **kwargs) -> Tensor:  # type: ignore
        batch_size, device = x.shape[0], x.device
        # Sample amount of noise to add for each batch element
        sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
        sigmas_batch = extend_dim(sigmas, dim=x.ndim)
        # Get noise
        noise = torch.randn_like(x)
        # Combine input and noise weighted by half-circle
        alphas, betas = self.get_alpha_beta(sigmas_batch)
        x_noisy = alphas * x + betas * noise
        v_target = alphas * noise - betas * x
        # Predict velocity and return loss
        v_pred = self.net(x_noisy, sigmas, **kwargs)
        return self.loss_fn(v_pred, v_target)


class ARVDiffusion(Diffusion):
    def __init__(self, net: nn.Module, length: int, num_splits: int, loss_fn: Any = F.mse_loss):
        super().__init__()
        assert length % num_splits == 0, "length must be divisible by num_splits"
        self.net = net
        self.length = length
        self.num_splits = num_splits
        self.split_length = length // num_splits
        self.loss_fn = loss_fn

    def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
        angle = sigmas * pi / 2
        alpha, beta = torch.cos(angle), torch.sin(angle)
        return alpha, beta

    def forward(self, x: Tensor, **kwargs) -> Tensor:
        """Returns diffusion loss of v-objective with different noises per split"""
        b, _, t, device, dtype = *x.shape, x.device, x.dtype
        assert t == self.length, "input length must match length"
        # Sample amount of noise to add for each split
        sigmas = torch.rand((b, 1, self.num_splits), device=device, dtype=dtype)
        sigmas = repeat(sigmas, "b 1 n -> b 1 (n l)", l=self.split_length)
        # Get noise
        noise = torch.randn_like(x)
        # Combine input and noise weighted by half-circle
        alphas, betas = self.get_alpha_beta(sigmas)
        x_noisy = alphas * x + betas * noise
        v_target = alphas * noise - betas * x
        # Sigmas will be provided as additional channel
        channels = torch.cat([x_noisy, sigmas], dim=1)
        # Predict velocity and return loss
        v_pred = self.net(channels, **kwargs)
        return self.loss_fn(v_pred, v_target)

""" Schedules """


class Schedule(nn.Module):
    """Interface used by different sampling schedules"""

    def forward(self, num_steps: int, device: torch.device) -> Tensor:
        raise NotImplementedError()


class LinearSchedule(Schedule):
    def __init__(self, start: float = 1.0, end: float = 0.0):
        super().__init__()
        self.start, self.end = start, end

    def forward(self, num_steps: int, device: Any) -> Tensor:
        return torch.linspace(self.start, self.end, num_steps, device=device)


""" Samplers """


class Sampler(nn.Module):
    pass


class VSampler(Sampler):

    diffusion_types = [VDiffusion]

    def __init__(self, net: nn.Module, schedule: Schedule = LinearSchedule()):
        super().__init__()
        self.net = net
        self.schedule = schedule

    def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
        angle = sigmas * pi / 2
        alpha, beta = torch.cos(angle), torch.sin(angle)
        return alpha, beta

    @torch.no_grad()
    def forward(  # type: ignore
        self, x_noisy: Tensor, num_steps: int, show_progress: bool = False, **kwargs
    ) -> Tensor:
        b = x_noisy.shape[0]
        sigmas = self.schedule(num_steps + 1, device=x_noisy.device)
        sigmas = repeat(sigmas, "i -> i b", b=b)
        sigmas_batch = extend_dim(sigmas, dim=x_noisy.ndim + 1)
        alphas, betas = self.get_alpha_beta(sigmas_batch)
        progress_bar = tqdm(range(num_steps), disable=not show_progress)

        for i in progress_bar:
            v_pred = self.net(x_noisy, sigmas[i], **kwargs)
            x_pred = alphas[i] * x_noisy - betas[i] * v_pred
            noise_pred = betas[i] * x_noisy + alphas[i] * v_pred
            x_noisy = alphas[i + 1] * x_pred + betas[i + 1] * noise_pred
            progress_bar.set_description(f"Sampling (noise={sigmas[i+1,0]:.2f})")

        return x_noisy


class ARVSampler(Sampler):
    def __init__(self, net: nn.Module, in_channels: int, length: int, num_splits: int):
        super().__init__()
        assert length % num_splits == 0, "length must be divisible by num_splits"
        self.length = length
        self.in_channels = in_channels
        self.num_splits = num_splits
        self.split_length = length // num_splits
        self.net = net

    @property
    def device(self):
        return next(self.net.parameters()).device

    def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
        angle = sigmas * pi / 2
        alpha = torch.cos(angle)
        beta = torch.sin(angle)
        return alpha, beta

    def get_sigmas_ladder(self, num_items: int, num_steps_per_split: int) -> Tensor:
        b, n, l, i = num_items, self.num_splits, self.split_length, num_steps_per_split
        n_half = n // 2  # Only half ladder, rest is zero, to leave some context
        sigmas = torch.linspace(1, 0, i * n_half, device=self.device)
        sigmas = repeat(sigmas, "(n i) -> i b 1 (n l)", b=b, l=l, n=n_half)
        sigmas = torch.flip(sigmas, dims=[-1])  # Lowest noise level first
        sigmas = F.pad(sigmas, pad=[0, 0, 0, 0, 0, 0, 0, 1])  # Add index i+1
        sigmas[-1, :, :, l:] = sigmas[0, :, :, :-l]  # Loop back at index i+1
        return torch.cat([torch.zeros_like(sigmas), sigmas], dim=-1)

    def sample_loop(
        self, current: Tensor, sigmas: Tensor, show_progress: bool = False, **kwargs
    ) -> Tensor:
        num_steps = sigmas.shape[0] - 1
        alphas, betas = self.get_alpha_beta(sigmas)
        progress_bar = tqdm(range(num_steps), disable=not show_progress)

        for i in progress_bar:
            channels = torch.cat([current, sigmas[i]], dim=1)
            v_pred = self.net(channels, **kwargs)
            x_pred = alphas[i] * current - betas[i] * v_pred
            noise_pred = betas[i] * current + alphas[i] * v_pred
            current = alphas[i + 1] * x_pred + betas[i + 1] * noise_pred
            progress_bar.set_description(f"Sampling (noise={sigmas[i+1,0,0,0]:.2f})")

        return current

    def sample_start(self, num_items: int, num_steps: int, **kwargs) -> Tensor:
        b, c, t = num_items, self.in_channels, self.length
        # Same sigma schedule over all chunks
        sigmas = torch.linspace(1, 0, num_steps + 1, device=self.device)
        sigmas = repeat(sigmas, "i -> i b 1 t", b=b, t=t)
        noise = torch.randn((b, c, t), device=self.device) * sigmas[0]
        # Sample start
        return self.sample_loop(current=noise, sigmas=sigmas, **kwargs)

    @torch.no_grad()
    def forward(
        self,
        num_items: int,
        num_chunks: int,
        num_steps: int,
        start: Optional[Tensor] = None,
        show_progress: bool = False,
        **kwargs,
    ) -> Tensor:
        assert_message = f"required at least {self.num_splits} chunks"
        assert num_chunks >= self.num_splits, assert_message

        # Sample initial chunks
        start = self.sample_start(num_items=num_items, num_steps=num_steps, **kwargs)
        # Return start if only num_splits chunks
        if num_chunks == self.num_splits:
            return start

        # Get sigmas for autoregressive ladder
        b, n = num_items, self.num_splits
        assert num_steps >= n, "num_steps must be greater than num_splits"
        sigmas = self.get_sigmas_ladder(
            num_items=b,
            num_steps_per_split=num_steps // self.num_splits,
        )
        alphas, betas = self.get_alpha_beta(sigmas)

        # Noise start to match ladder and set starting chunks
        start_noise = alphas[0] * start + betas[0] * torch.randn_like(start)
        chunks = list(start_noise.chunk(chunks=n, dim=-1))

        # Loop over ladder shifts
        num_shifts = num_chunks  # - self.num_splits
        progress_bar = tqdm(range(num_shifts), disable=not show_progress)

        for j in progress_bar:
            # Decrease ladder noise of last n chunks
            updated = self.sample_loop(
                current=torch.cat(chunks[-n:], dim=-1), sigmas=sigmas, **kwargs
            )
            # Update chunks
            chunks[-n:] = list(updated.chunk(chunks=n, dim=-1))
            # Add fresh noise chunk
            shape = (b, self.in_channels, self.split_length)
            chunks += [torch.randn(shape, device=self.device)]

        return torch.cat(chunks[:num_chunks], dim=-1)


"""  Inpainters """


class Inpainter(nn.Module):
    pass


class VInpainter(Inpainter):

    diffusion_types = [VDiffusion]

    def __init__(self, net: nn.Module, schedule: Schedule = LinearSchedule()):
        super().__init__()
        self.net = net
        self.schedule = schedule

    def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
        angle = sigmas * pi / 2
        alpha, beta = torch.cos(angle), torch.sin(angle)
        return alpha, beta

    @torch.no_grad()
    def forward(  # type: ignore
        self,
        source: Tensor,
        mask: Tensor,
        num_steps: int,
        num_resamples: int,
        show_progress: bool = False,
        x_noisy: Optional[Tensor] = None,
        **kwargs,
    ) -> Tensor:
        x_noisy = default(x_noisy, lambda: torch.randn_like(source))
        b = x_noisy.shape[0]
        sigmas = self.schedule(num_steps + 1, device=x_noisy.device)
        sigmas = repeat(sigmas, "i -> i b", b=b)
        sigmas_batch = extend_dim(sigmas, dim=x_noisy.ndim + 1)
        alphas, betas = self.get_alpha_beta(sigmas_batch)
        progress_bar = tqdm(range(num_steps), disable=not show_progress)

        for i in progress_bar:
            for r in range(num_resamples):
                v_pred = self.net(x_noisy, sigmas[i], **kwargs)
                x_pred = alphas[i] * x_noisy - betas[i] * v_pred
                noise_pred = betas[i] * x_noisy + alphas[i] * v_pred
                # Renoise to current noise level if resampling
                j = r == num_resamples - 1
                x_noisy = alphas[i + j] * x_pred + betas[i + j] * noise_pred
                s_noisy = alphas[i + j] * source + betas[i + j] * torch.randn_like(
                    source
                )
                x_noisy = s_noisy * mask + x_noisy * ~mask

            progress_bar.set_description(f"Inpainting (noise={sigmas[i+1,0]:.2f})")

        return x_noisy