File size: 7,649 Bytes
bcdb559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
Implementation of model from:
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
Convolutional Recurrent Neural Networks" (2019)
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
"""
import torch
from torch import nn
        
class JDCNet(nn.Module):
    """
    Joint Detection and Classification Network model for singing voice melody.
    """
    def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
        super().__init__()
        self.num_class = num_class

        # input = (b, 1, 31, 513), b = batch size
        self.conv_block = nn.Sequential(
            nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False),  # out: (b, 64, 31, 513)
            nn.BatchNorm2d(num_features=64),
            nn.LeakyReLU(leaky_relu_slope, inplace=True),
            nn.Conv2d(64, 64, 3, padding=1, bias=False),  # (b, 64, 31, 513)
        )

        # res blocks
        self.res_block1 = ResBlock(in_channels=64, out_channels=128)  # (b, 128, 31, 128)
        self.res_block2 = ResBlock(in_channels=128, out_channels=192)  # (b, 192, 31, 32)
        self.res_block3 = ResBlock(in_channels=192, out_channels=256)  # (b, 256, 31, 8)

        # pool block
        self.pool_block = nn.Sequential(
            nn.BatchNorm2d(num_features=256),
            nn.LeakyReLU(leaky_relu_slope, inplace=True),
            nn.MaxPool2d(kernel_size=(1, 4)),  # (b, 256, 31, 2)
            nn.Dropout(p=0.2),
        )

        # maxpool layers (for auxiliary network inputs)
        # in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
        self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
        # in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
        self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
        # in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
        self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))

        # in = (b, 640, 31, 2), out = (b, 256, 31, 2)
        self.detector_conv = nn.Sequential(
            nn.Conv2d(640, 256, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(leaky_relu_slope, inplace=True),
            nn.Dropout(p=0.2),
        )

        # input: (b, 31, 512) - resized from (b, 256, 31, 2)
        self.bilstm_classifier = nn.LSTM(
            input_size=512, hidden_size=256,
            batch_first=True, bidirectional=True)  # (b, 31, 512)

        # input: (b, 31, 512) - resized from (b, 256, 31, 2)
        self.bilstm_detector = nn.LSTM(
            input_size=512, hidden_size=256,
            batch_first=True, bidirectional=True)  # (b, 31, 512)

        # input: (b * 31, 512)
        self.classifier = nn.Linear(in_features=512, out_features=self.num_class)  # (b * 31, num_class)

        # input: (b * 31, 512)
        self.detector = nn.Linear(in_features=512, out_features=2)  # (b * 31, 2) - binary classifier

        # initialize weights
        self.apply(self.init_weights)

    def get_feature_GAN(self, x):
        seq_len = x.shape[-2]
        x = x.float().transpose(-1, -2)
        
        convblock_out = self.conv_block(x)
        
        resblock1_out = self.res_block1(convblock_out)
        resblock2_out = self.res_block2(resblock1_out)
        resblock3_out = self.res_block3(resblock2_out)
        poolblock_out = self.pool_block[0](resblock3_out)
        poolblock_out = self.pool_block[1](poolblock_out)
        
        return poolblock_out.transpose(-1, -2)
        
    def get_feature(self, x):
        seq_len = x.shape[-2]
        x = x.float().transpose(-1, -2)
        
        convblock_out = self.conv_block(x)
        
        resblock1_out = self.res_block1(convblock_out)
        resblock2_out = self.res_block2(resblock1_out)
        resblock3_out = self.res_block3(resblock2_out)
        poolblock_out = self.pool_block[0](resblock3_out)
        poolblock_out = self.pool_block[1](poolblock_out)
        
        return self.pool_block[2](poolblock_out)
        
    def forward(self, x):
        """
        Returns:
            classification_prediction, detection_prediction
            sizes: (b, 31, 722), (b, 31, 2)
        """
        ###############################
        # forward pass for classifier #
        ###############################
        seq_len = x.shape[-1]
        x = x.float().transpose(-1, -2)
        
        convblock_out = self.conv_block(x)
        
        resblock1_out = self.res_block1(convblock_out)
        resblock2_out = self.res_block2(resblock1_out)
        resblock3_out = self.res_block3(resblock2_out)
        
        
        poolblock_out = self.pool_block[0](resblock3_out)
        poolblock_out = self.pool_block[1](poolblock_out)
        GAN_feature = poolblock_out.transpose(-1, -2)
        poolblock_out = self.pool_block[2](poolblock_out)
        
        # (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
        classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
        classifier_out, _ = self.bilstm_classifier(classifier_out)  # ignore the hidden states

        classifier_out = classifier_out.contiguous().view((-1, 512))  # (b * 31, 512)
        classifier_out = self.classifier(classifier_out)
        classifier_out = classifier_out.view((-1, seq_len, self.num_class))  # (b, 31, num_class)
        
        # sizes: (b, 31, 722), (b, 31, 2)
        # classifier output consists of predicted pitch classes per frame
        # detector output consists of: (isvoice, notvoice) estimates per frame
        return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out

    @staticmethod
    def init_weights(m):
        if isinstance(m, nn.Linear):
            nn.init.kaiming_uniform_(m.weight)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.Conv2d):
            nn.init.xavier_normal_(m.weight)
        elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
            for p in m.parameters():
                if p.data is None:
                    continue

                if len(p.shape) >= 2:
                    nn.init.orthogonal_(p.data)
                else:
                    nn.init.normal_(p.data)
                    

class ResBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
        super().__init__()
        self.downsample = in_channels != out_channels

        # BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
        self.pre_conv = nn.Sequential(
            nn.BatchNorm2d(num_features=in_channels),
            nn.LeakyReLU(leaky_relu_slope, inplace=True),
            nn.MaxPool2d(kernel_size=(1, 2)),  # apply downsampling on the y axis only
        )

        # conv layers
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                      kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(leaky_relu_slope, inplace=True),
            nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
        )

        # 1 x 1 convolution layer to match the feature dimensions
        self.conv1by1 = None
        if self.downsample:
            self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)

    def forward(self, x):
        x = self.pre_conv(x)
        if self.downsample:
            x = self.conv(x) + self.conv1by1(x)
        else:
            x = self.conv(x) + x
        return x