File size: 8,459 Bytes
bcdb559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
#coding: utf-8
import os
import os.path as osp
import time
import random
import numpy as np
import random
import soundfile as sf
import librosa
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from torch.utils.data import DataLoader
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
import pandas as pd
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print(text)
return indexes
np.random.seed(1)
random.seed(1)
SPECT_PARAMS = {
"n_fft": 2048,
"win_length": 1200,
"hop_length": 300
}
MEL_PARAMS = {
"n_mels": 80,
}
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
class FilePathDataset(torch.utils.data.Dataset):
def __init__(self,
data_list,
root_path,
sr=24000,
data_augmentation=False,
validation=False,
OOD_data="Data/OOD_texts.txt",
min_length=50,
):
spect_params = SPECT_PARAMS
mel_params = MEL_PARAMS
_data_list = [l.strip().split('|') for l in data_list]
self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list]
self.text_cleaner = TextCleaner()
self.sr = sr
self.df = pd.DataFrame(self.data_list)
self.to_melspec = torchaudio.transforms.MelSpectrogram(**MEL_PARAMS)
self.mean, self.std = -4, 4
self.data_augmentation = data_augmentation and (not validation)
self.max_mel_length = 192
self.min_length = min_length
with open(OOD_data, 'r', encoding='utf-8') as f:
tl = f.readlines()
idx = 1 if '.wav' in tl[0].split('|')[0] else 0
self.ptexts = [t.split('|')[idx] for t in tl]
self.root_path = root_path
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
data = self.data_list[idx]
path = data[0]
wave, text_tensor, speaker_id = self._load_tensor(data)
mel_tensor = preprocess(wave).squeeze()
acoustic_feature = mel_tensor.squeeze()
length_feature = acoustic_feature.size(1)
acoustic_feature = acoustic_feature[:, :(length_feature - length_feature % 2)]
# get reference sample
ref_data = (self.df[self.df[2] == str(speaker_id)]).sample(n=1).iloc[0].tolist()
ref_mel_tensor, ref_label = self._load_data(ref_data[:3])
# get OOD text
ps = ""
while len(ps) < self.min_length:
rand_idx = np.random.randint(0, len(self.ptexts) - 1)
ps = self.ptexts[rand_idx]
text = self.text_cleaner(ps)
text.insert(0, 0)
text.append(0)
ref_text = torch.LongTensor(text)
return speaker_id, acoustic_feature, text_tensor, ref_text, ref_mel_tensor, ref_label, path, wave
def _load_tensor(self, data):
wave_path, text, speaker_id = data
speaker_id = int(speaker_id)
wave, sr = sf.read(osp.join(self.root_path, wave_path))
if wave.shape[-1] == 2:
wave = wave[:, 0].squeeze()
if sr != 24000:
wave = librosa.resample(wave, orig_sr=sr, target_sr=24000)
print(wave_path, sr)
wave = np.concatenate([np.zeros([5000]), wave, np.zeros([5000])], axis=0)
text = self.text_cleaner(text)
text.insert(0, 0)
text.append(0)
text = torch.LongTensor(text)
return wave, text, speaker_id
def _load_data(self, data):
wave, text_tensor, speaker_id = self._load_tensor(data)
mel_tensor = preprocess(wave).squeeze()
mel_length = mel_tensor.size(1)
if mel_length > self.max_mel_length:
random_start = np.random.randint(0, mel_length - self.max_mel_length)
mel_tensor = mel_tensor[:, random_start:random_start + self.max_mel_length]
return mel_tensor, speaker_id
class Collater(object):
"""
Args:
adaptive_batch_size (bool): if true, decrease batch size when long data comes.
"""
def __init__(self, return_wave=False):
self.text_pad_index = 0
self.min_mel_length = 192
self.max_mel_length = 192
self.return_wave = return_wave
def __call__(self, batch):
# batch[0] = wave, mel, text, f0, speakerid
batch_size = len(batch)
# sort by mel length
lengths = [b[1].shape[1] for b in batch]
batch_indexes = np.argsort(lengths)[::-1]
batch = [batch[bid] for bid in batch_indexes]
nmels = batch[0][1].size(0)
max_mel_length = max([b[1].shape[1] for b in batch])
max_text_length = max([b[2].shape[0] for b in batch])
max_rtext_length = max([b[3].shape[0] for b in batch])
labels = torch.zeros((batch_size)).long()
mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
texts = torch.zeros((batch_size, max_text_length)).long()
ref_texts = torch.zeros((batch_size, max_rtext_length)).long()
input_lengths = torch.zeros(batch_size).long()
ref_lengths = torch.zeros(batch_size).long()
output_lengths = torch.zeros(batch_size).long()
ref_mels = torch.zeros((batch_size, nmels, self.max_mel_length)).float()
ref_labels = torch.zeros((batch_size)).long()
paths = ['' for _ in range(batch_size)]
waves = [None for _ in range(batch_size)]
for bid, (label, mel, text, ref_text, ref_mel, ref_label, path, wave) in enumerate(batch):
mel_size = mel.size(1)
text_size = text.size(0)
rtext_size = ref_text.size(0)
labels[bid] = label
mels[bid, :, :mel_size] = mel
texts[bid, :text_size] = text
ref_texts[bid, :rtext_size] = ref_text
input_lengths[bid] = text_size
ref_lengths[bid] = rtext_size
output_lengths[bid] = mel_size
paths[bid] = path
ref_mel_size = ref_mel.size(1)
ref_mels[bid, :, :ref_mel_size] = ref_mel
ref_labels[bid] = ref_label
waves[bid] = wave
return waves, texts, input_lengths, ref_texts, ref_lengths, mels, output_lengths, ref_mels
def build_dataloader(path_list,
root_path,
validation=False,
OOD_data="Data/OOD_texts.txt",
min_length=50,
batch_size=4,
num_workers=1,
device='cpu',
collate_config={},
dataset_config={}):
dataset = FilePathDataset(path_list, root_path, OOD_data=OOD_data, min_length=min_length, validation=validation, **dataset_config)
collate_fn = Collater(**collate_config)
data_loader = DataLoader(dataset,
batch_size=batch_size,
shuffle=(not validation),
num_workers=num_workers,
drop_last=True,
collate_fn=collate_fn,
pin_memory=(device != 'cpu'))
return data_loader
|